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Abstract: Estimating the true mortality burden of COVID-19 for ev-
ery country in the world is a difficult, but crucial, public health endeavor.
Attributing deaths, direct or indirect, to COVID-19 is problematic. A more
attainable target is the “excess deaths”, the number of deaths in a particu-
lar period, relative to that expected during “normal times”, and we estimate
this for all countries on a monthly time scale for 2020 and 2021. The excess
mortality requires two numbers, the total deaths and the expected deaths, but
the former is unavailable for many countries, and so modeling is required for
these countries, and the expected deaths are based on historic data and we
develop a model for producing expected estimates for all countries. We allow
for uncertainty in the modeled expected numbers when calculating the ex-
cess. We describe the methods that were developed to produce World Health
Organization (WHO) excess death estimates. To achieve both interpretabil-
ity and transparency we developed a relatively simple overdispersed Poisson
count framework, within which the various data types can be modeled. We
use data from countries with national monthly data to build a predictive log-
linear regression model with time-varying coefficients for countries without
data. For a number of countries, subnational data only are available, and we
construct a multinomial model for such data, based on the assumption that
the fractions of deaths in specific sub-regions remain approximately constant
over time. Our inferential approach is Bayesian, with the covariate predic-
tive model being implemented in the fast and accurate INLA software. The
subnational modeling was carried out using MCMC in Stan or in some non-
standard data situations, using our own MCMC code. Based on our model-
ing, the 95% interval estimate for global excess mortality, over 2020–2021,
is 13.3–16.6 million.

1. Introduction. The World Health Organization (WHO) has been tracking the impact
of COVID-19 as the pandemic has evolved over time. Aggregate case and death num-
bers are being reported to the WHO and the data have been made publicly available at
https://covid19.who.int/. For a number of reasons, these reported data neither
provide a complete picture of the health burden attributable to COVID-19, nor of how
many lives have been lost, directly and indirectly, due to the pandemic. Some deaths that
are attributable to COVID-19 have not been certified as such because tests had not been
conducted prior to death. Deaths may also be mistakenly certified as COVID-19, though
this is less likely. It does not affect our estimates of excess mortality, based on all-cause
mortality (ACM) data, however, only causing the resultant ratio of excess mortality to re-
ported COVID-19 deaths to be lower than if such mistaken certification did not occur.
There have also been variations in the death certification rules countries have applied in
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regards to COVID-19 (Garcia et al., 2021; Riffe and Acosta, 2021). The impact of the
pandemic is far reaching. Beyond the deaths directly attributable to it are those that can
be linked to the conditions that have prevailed since the pandemic began and have led to
some health systems being overwhelmed or some patients avoiding healthcare. In countries
where COVID-19 spread was limited, due to lockdown measures or otherwise, some po-
tential causes of death have decreased, such as those attributable to air pollution, or traf-
fic accidents, or from other communicable diseases such as influenza like illness, result-
ing in negative excess or deficit deaths (Kung et al., 2020; Karlinsky and Kobak, 2021). In
light of the challenges posed by using reported COVID-19 data, excess mortality is consid-
ered a more objective and comparable (across countries) measure of the mortality impact of
COVID-19 (Leon et al., 2020). The WHO defines excess mortality as, “the mortality above
what would be expected based on the non-crisis mortality rate in the population of interest”
(https://www.who.int/hac/about/definitions/en/). Knowledge of the ex-
cess deaths not only paints a clearer picture of the pandemic, but can also aid in implementing
public health initiatives.

The excess mortality in country c, ACM counts in month t for 2020 and 2021 are denoted
by Yc,t. These counts, in addition to the contribution from expected deaths, are assumed to
be a result of the direct effects of COVID-19 (i.e., deaths attributable to it) and the indi-
rect knock-on effects on health systems and society, along with deaths that were averted. The
choice of a monthly time scale gives sufficient temporal resolution for most public health pur-
poses. The hypothetical or “counterfactual” no-COVID-19 scenario uses the expected death
numbers Ec,t, which have been forecasted to month t, using historic (prior to the pandemic)
deaths data, usually over 2015–2019. Excess deaths are defined as:

(1) δc,t = Yc,t −Ec,t
for country c where c= 1, . . . ,194, and in month t where t= 1, . . . ,24, represent months in
2020 and 2021.

The exercise of determining excess deaths for all countries is non-trivial, because the re-
quired ACM counts Yc,t are currently unavailable for many country/month combinations.
Routine mortality data is often received by the WHO a year or more after the year of death.
In addition, differential reporting capacity and variable data quality across countries has re-
sulted in many nations lacking the systems to provide good quality routine data even histori-
cally (Mikkelsen et al., 2015; Adair and Lopez, 2018; GBD, 2020; UNSD, 2021; Karlinsky,
2021). Correspondingly, these countries lack the capacity required to monitor ACM during
the unprecedented COVID-19 pandemic. Hence, a number of countries are unable to con-
tribute to the centralized systematic mortality surveillance that would be needed to measure
global, regional and country level excess mortality by the WHO.

In this paper we describe our ongoing methods development to produce the WHO excess
mortality estimates. In Section 2 we discuss data sources, before describing models for esti-
mation of the expected numbers in Section 3. Section 4 describes our national covariate model
and in Section 5 we outline the models we used for countries with subnational monthly data,
national annual data, or a combination. Section 6 provides main results, with more extensive
summaries appearing in the Supplementary Materials. Two other sets of global estimates of
excess deaths have been produced by The Economist and the Institute for Health Metrics and
Evaluation (IHME) with the latter being described in Wang et al. (2022). We fully describe
and critique these methods in Section 7. The paper concludes with a discussion in Section 8.
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2. Data Sources.

2.1. Mortality Data. Excess mortality cannot be directly measured for all countries due
to many not having the required ACM data. The WHO usually receives routine mortality data
on an annual basis in the year after the year of death or perhaps after an even greater lag. Civil
registration and vital statistics (CRVS) systems differ greatly across countries with varying
timelines and quality control measures for compiling unit record cause-of-death numbers
into aggregates identified by cause, age, sex, place, and period of death. In addition, differ-
ential reporting coverage, the absence of electronic surveillance systems in some locations
and limited investments in CRVS systems has resulted in many nations lacking the struc-
tures necessary to provide good quality routine data, even before the COVID-19 pandemic.
This lack of capacity and the data required to monitor ACM has been exacerbated during
the unprecedented pandemic. Therefore, many countries are unable to contribute to a central-
ized systematic mortality surveillance that would be needed to measure global, regional and
country level excess mortality by the WHO.

Region Full National Partial National Mixed Data No Data Total Proportion Population
AFRO 4 2 0 41 47 0.13
AMRO 11 12 4 9 36 0.90
EMRO 4 5 0 12 21 0.32
EURO 46 5 1 1 53 0.89
SEARO 1 1 3 6 11 0.04
WPRO 6 3 2 16 27 0.18
Global 72 27 10 85 194 0.33

TABLE 1
Country data availability summary for 2020 and 2021. Full national countries have data over all 24 months and
partial national have data for less than 24 months; for example, 83 countries have data for at least the first 18

months, and 96 countries have data for at least the first 12 months. Mixed data refers to countries with
subnational monthly data for some period (4 countries), national annual data (5 countries) or a combination

(China). WHO regions: African Region (AFRO), Region of the Americas (AMRO), Eastern Mediterranean
Region (EMRO), European Region (EURO), South-East Asian Region (SEARO), Western Pacific Region

(WPRO). The proportion of the population that are observed column is calculated at the country-month level.
The Supplementary Materials include a table that lists the type of data available for each country.

All countries report their official COVID-19 death count, but we would not expect this
to be accurate, and for many countries we would expect serious underestimation, for the
reasons already outlined and for political reasons. However, the official count does provide
an interesting summary for comparison with the estimated excess, and the COVID-19 death
rate is used as a covariate in our ACM estimation model.

For this study, our main sources of data are reports of ACM as collected and reported by
countries’ relevant institutions – from national statistics offices, ministries of health, popula-
tion registries, etc. These have been collected in several repositories such as the data routinely
shared with WHO as part of its standing agreement with member states, Eurostat, The Human
Mortality Database (HMD) as part of the Short-Term Mortality Fluctuations (STMF) project
(Németh et al., 2021) and the World Mortality Dataset (WMD), as described in Karlinsky and
Kobak (2021). Monthly data are included after accounting for delayed registration either by
adjusting for registration delay (Australia, Brazil, United States) or by not-including highly
incomplete months.

In this paper we report the current state of data at our disposal. This project is ongoing
and data is added as soon as available. Table 1 shows the breakdown of data availability
by WHO region. Just over a half (99) of the 194 countries provide monthly national data
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from at least some of the pandemic period, while 10 other countries provide subnational
monthly data, national annual data, or a combination of the two (this includes Argentina
which has partial national and subnational data, so could fit in with partial or mixed data).
It is immediately clear that there is a huge regional imbalance in data availability, with the
EURO region being very well represented, the AMRO region having data from 75% of the
countries, and other regions being more poorly represented. For example, in the AFRO region
we only have data from 6 out of 47 countries. For those countries with data in month t, we
assume that the ACM part of the excess δc,t, as defined in (1), is known exactly. Hence, we do
not account for inaccuracies in the reported deaths (beyond the aforementioned accounting
for delayed registration). For all countries we do, however, account for uncertainty in the
expected numbers.

2.2. Covariate Data. For countries with no data, we predict the ACM count using a
log-linear covariate model. A range of covariates were considered, including a high income
country binary indicator, COVID-19 test positivity rate, COVID-19 death rate, temperature,
population density, socio-demographic index (SDI), human development index (HDI), strin-
gency (index for lockdown restrictions and closures, overall government response, economic
(including measures such as income support and debt relief), containment (this index com-
bines “lockdown” restrictions and closures with measures such as testing policy and contact
tracing, short term investment in healthcare, as well investments in vaccines – it is calcu-
lated using all ordinal containment and closure policy indicators and health system policy
indicators, for further details see Hale et al. (2020)), historic (from 2019) non-communicable
disease rates, historic cardiovascular disease rate, historic HIV rate, historic diabetes preva-
lence, life expectancy, proportion of the population under-15, proportion of the population
over-65. Some of the covariates are time-varying (COVID-19 test positivity rate, COVID-19
death rate, temperature, stringency, overall government response, containment), while the re-
mainder are constant over time. A number of the covariates were not available by month for
all countries and so their values were imputed. Specifically, (WHO) regional medians were
used for countries with missing data. Details are given in the Supplementary Materials.

3. Expected Mortality Modeling. A key component of the excess mortality calculation
is the ACM count that would be expected in non-pandemic times, for each country and month.
We describe models for two types of countries: those that have historic monthly ACM data,
and those that have historic annual ACM data only – 100 countries have historic monthly data
and 94 have historic annual data. In terms of the period upon which we base the expected
numbers, it is usually 2015–2019 for countries with monthly historical data, and is usually
2000–2019 for countries with annual historical data.

3.1. Countries with Monthly Data. We consider first those countries with monthly ACM
data over multiple years (usually 2015–2019). For country c, Yc,t represents the ACM count
for country c and month t, for t= 1, . . . ,Mc, where Mc is the number of historic months for
which we have data. We assume the sampling model for Yc,t is,

Yc,t|µc,t ∼NegBin(µE
c,t, φ

E
c ),

parametrized in terms of the mean, µE
c,t, and the overdispersion parameter, φE

c , such that
var(Yc,t|µE

c,t, φ
E
c ) = µE

c,t(1 + µE
c,t/φ

E
c ), with the Poisson model being recovered as φE

c →∞.
We let v[t] index the year in which month t occurred (for example, labeled 1, . . . ,5 when data
are available for 2015–2019) and m[t] be the month (labeled 1, . . . ,12), so that given v,m
we can find t as t= 12(v− 1) +m. The mean is modeled as,

(2) ηc,t = log(µc,t) = f y
c (v[t]) + fm

c (m[t])
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where f y
c (·) models the annual trend, and fm

c (·) is a smooth function of time twhich accounts
for within-year seasonal variation. The yearly trend is modeled with a thin-plate spline and
within-year variation with a cyclic cubic spline (Rivera et al., 2020). In both cases we use the
gam function in the mgcv package with generalized cross-validation (Wood, 2017, Section
4.5.3) used to select smoothing parameters. The spline model is fitted separately for each
country. Algeria, Iraq and Sri Lanka have less than three years of historical data, and so a
linear term is used for modeling yearly variation. This model is used to obtain predictions of
the expected deaths µE

c,t for all t in 2020 and 2021, with both a point estimate and a standard
error being produced.

3.2. Countries with Annual Data. For countries with only annual historic data, the goal
is to predict expected numbers by month t for t= 1, . . . ,24. We summarize our strategy for
producing expected numbers for countries with annual data only:

1. Fit a negative binomial spline model to the countries with annual counts only. Use the
spline to predict the total annual ACM for 2020 and 2021, for these countries.

2. In a separate exercise, fit the multinomial model to all of the countries with monthly data,
with deaths being attributed via the log-linear temperature model (3). This produces an
estimate β̂.

3. Combine the spline model with the multinomial model using monthly temperature appor-
tionment to obtain expected numbers for the countries without monthly data.

The annual trend can be estimated for each country using the method we described in the
previous section minus the monthly term, i.e., a spline in year. To apportion the yearly totals
to the months, we use the fact that a collection of Poisson random variables conditioned
on their sum produce a multinomial distribution with within-year variation modeled using
temperature, which is acting as a surrogate for seasonality. This relationship is learned from
countries with historic monthly data. We use a smooth series of monthly temperatures since
2015. Let Y c,v = {Yc,v,m,m = 1, . . . ,12} be the vector that contains the ACM counts by
month in year v, v = 1, . . . ,5. Suppose each of the 12 constituent counts are Poisson with
mean ζc,v,m, for m= 1, . . . ,12. Then, within the year, conditional on the total ACM,

Y c,v|Y +
c,v,pc,v ∼Multinomial(Y +

c,v,pc,v),

where Y +
c,v is the national count in country c and year v and pc,v = {pc,v,m,m= 1, . . . ,12}

with

pc,v,m =
ζc,v,m∑12

m′=1 ζc,v,m′
,

We assume,

(3) log(ζc,v,m) = zc,v,mβ

where zc,v,m is the temperature and β is the associated log-linear coefficient. The multinomial
model can be fitted in INLA using the Poisson trick (Baker, 1994) which involves fitting the
Poisson model for the data in country c, month m:

Yc,v,m|λc,v ∼ Poisson( λc,vezc,v,mβ ),

where the λc,v parameters are given (improper) priors π(λc,v)∝ 1/λc,v . Further details may
be found in the Supplementary Materials.

The estimated expected counts are shown in blue in Figure 1, for selected countries.
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FIG 1. Monthly time series of all cause mortality: expected counts in red and observed counts in blue, for selected
countries. The black vertical line is drawn at the start of 2020. The dashed red bands denote 95% uncertainty
intervals for the mean expected numbers. For these countries, ACM counts are available for all months apart from
Egypt, for which the last month is missing.

3.3. Modeling Uncertainty in the Expected Numbers. For all countries the expected
numbers appear directly in the excess calculation, (1). In addition, for countries with no pan-
demic ACM data, the Poisson model we adopt for covariate modeling includes the expected
number as an offset. For all countries and months, we obtain not just an estimate of the mean
expected mortality but also a measure of the uncertainty (due to uncertainty in estimating the
spline model) in this estimate. We now describe how the uncertainty in the mean expected
count is accounted for in our modeling.

For countries with monthly data, we use the spline model to predict the log of the mean
expected number of deaths. Asymptotically, the estimator for the log of the mean expected
numbers is normally distributed. Let η̂c,t′ and σ̂2c,t′ represent the mean and standard deviation
of the prediction for pandemic months, labeled as t′ = 1, . . . ,24. We simulate S samples
from the asymptotic normal sampling distribution with mean η̂c,t′ and standard deviation
σ̂c,t′ ; denote these samples by η(s)c,t′ , s= 1, . . . , S. We then transform the samples so that we

have samples for the expected numbers E(s)
c,t′ = exp(η

(s)
c,t′), for s= 1, . . . , S. We then use the

method of moments to fit a gamma distribution to these S samples with shape τc,t′ and rate
τc,t′/Ec,t′ . In particular, letting mc,t′ denote the sample mean, and Vc,t′ denote the sample
variance, we set Êc,t′ =mc,t′ and τ̂c,t′ =m2

c,t′/Vc,t′ . We approximate the distribution of the
expected numbers as gamma, since this is conjugate to the Poisson, and so allows efficient
inference with INLA (Rue et al., 2009) using a negative binomial, as we describe in Section
4. Effectively, we are approximating the sampling distribution of the mean expected count by
a gamma distribution.
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We now consider a generic country c with yearly data only. In pandemic year v′, we use
the spline model to predict the log of the expected number of deaths. Let η̂c,v′ and σ̂2c,v′ rep-
resent the mean and standard deviation of the prediction, for v′ = 1,2 (the two pandemic
years). We then simulate S samples from a normal distribution with mean η̂c,v′ and standard
deviation σ̂c,v′ ; denote these samples by η(s)c,v′ , s= 1, . . . , S. We then transform the samples so

that we have samples for the expected numbers E(s)
c,v′ = exp(η

(s)
c,v′), for s= 1, . . . , S. We then

apply the monthly temperature model to produce predictions of the proportion of deaths in
each month in each year, i.e., for a given pandemic month m′, we have S samples of the pre-
dicted proportion of deaths in month m′ of year v′, p(s)c,v′,m′ , for s= 1, . . . , S. Converting to
pandemic cumulative months t′ = 12(v′− 1) +m′ we then produce samples of the expected
number of deaths in month t′, as E(s)

c,t′ =E
(s)
c,v′×p

(s)
c,v′,m′ . We then use the method of moments

to fit a gamma distribution to these S samples as for the countries with monthly data. To
summarize, in both cases we have a distribution for Ec,t′ which is Gamma(τ̂c,t′ , τ̂c,t′/Êc,t′).
The Supplementary Materials provide comparisons of the true distribution of the mean ex-
pected counts and the approximating gamma distributions, and illustrates that the latter are
accurate. We also experimented with including negative binomial sampling variability in the
calculation of the expected numbers, but it made little additional contribution to the intervals
for the excess.

In the next section we describe a Bayesian modeling of ACM in the pandemic, for coun-
tries without data. Inference for the expected numbers is frequentist, and we sample from the
asymptotic normal distribution, but with flat priors, this will approximate a Bayesian anal-
ysis, and so when we combine the two components in the excess (1) we view the resultant
inference as Bayesian.

We next describe how we model ACM – we have different models for different data sce-
narios but in each case the starting point is the Poisson distribution.

4. National Mortality Models for Countries with No Data. For countries with ob-
served monthly national ACM data, Yc,t, we use these directly in the excess calculation. In
the countries with no data we need to estimate the ACM count. We follow a Bayesian ap-
proach so that for countries without data we obtain a predictive distribution over this count
and this, when combined with the gamma distribution for the expected numbers, gives a
distribution for the excess δc,t.

In Figure 2 we plot the monthly counts for a range of countries with monthly ACM data,
along with the reported COVID-19 deaths and the expected numbers. We see very different
scenarios in different countries. In all countries but Japan there is a clear large difference
between the observed and the expected, though within each country this difference shows
large fluctuations over time. In Figure 3, again for countries with monthly ACM data, we plot
the excess δc,t = Yc,t −Ec,t, as a function of month t (including uncertainty in the expected
numbers), along with the reported COVID-19 deaths. As expected, δc,t is greater than the
reported overall in general, but not for Japan, and for most countries displayed the difference
between the excess and the reported shows a complex temporal pattern.

While complex models that attempt to pick up data nuances are desirable, given the id-
iosyncrasies of the different data sources described in Section 2, any modeling exercise is
fraught with difficulties, and we resort to a relatively simple model in which we build an
overdispersed Poisson log-linear regression model for the available monthly ACM data to
predict the monthly ACM in those countries with no data. We cannot overemphasize the re-
gional imbalance of the missing ACM data – in the AFRO region in particular, our estimates
should be viewed with extreme caution, since they are predicted from data which overwhelm-
ingly is from other regions.
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FIG 2. Monthly time series of ACM counts, expected counts (with 95% interval estimates) and reported COVID-
19 mortality counts, for selected countries. ACM counts are available for all months apart from Egypt, for which
the last month is missing.

The basic starting model is

(4) Yc,t|Ec,t, θc,t ∼ Poisson(Ec,tθc,t),

so that θc,t > 0 is a relative rate parameter, with θc,t > 1 / θc,t < 1 corresponding to a
higher/lower ACM rate than expected, based on historic data. Recall, from Section 3, that
we model the distribution of the expected counts Ec,t as Gamma(τ̂c,t, τ̂c,t/Êc,t). When com-
bined with (4), we obtain the sampling model,

Yc,t|θc,t ∼NegBin(Êc,tθc,t, τ̂c,t)

with known overdispersion parameter τ̂c,t to give var(Yc,t|θc,t) = Êc,tθc,t(1 + Êc,tθc,t/τ̂c,t).
The mean is E[Yc,t|θc,t] = Êc,tθc,t. The relative rate parameter θc,t is modeled as,

log θc,t = α+

B∑
b=1

βbtXbct +

G∑
g=1

γgZgc + εc,t.(5)

The model details are:

• The intercept is α and the time-invariant covariates (e.g., SDI, historic diabetes rate) have
fixed association parameters γg .

• We have B time-varying covariates (e.g., sqrt(C19 death rate), test positivity rate, con-
tainment), and we allow the associations for these variables, βbt, to be time-varying via a
random walk of order 2 (RW2) prior (Rue and Held, 2005) which has variance σ2β . These
parameters include a sum-to-zero constraint, since we include a fixed effect for the overall
association (across months) – these are included in the G time-invariant part of the model.
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