MICROBIOLOGICAL RISK ASSESSMENT SERIES

3 1726-5274

Hazard characterization for pathogens in food and water

GUIDELINES

Microbiological Risk Assessment Series, No. 3

Hazard Characterization for Pathogens in Food and Water

Guidelines

Food and Agriculture Organization of the United Nations World Health Organization

2003

For further information on joint FAO/WHO activities on microbiological risk assessment, please contact:

Food Quality and Standards Service	or
Food and Nutrition Division	
Food and Agriculture Organization of the	
United Nations	
Viale delle Terme di Caracalla	
I-00100 Rome, Italy	
Fax: +39 06 57054593	
E-mail: nutrition@fao.org	
Web site: http://www.fao.org/es/esn	

Food Safety Department World Health Organization 20, Avenue Appia CH-1211 Geneva 27 Switzerland Fax: +41 22 7914807 E-mail: foodsafety@who.int Web site: http://www.who.int/foodsafety

Cover design: Food and Agriculture Organization of the United Nations and the World Health Organization. Cover picture: © Dennis Kunkel Microscopy, Inc.

WHO Library Cataloguing-in-Publication Data

Hazard characterization for pathogens in food and water : guidelines.

(Microbiological risk assessment series ; no. 3) 1.Food microbiology 2.Water microbiology 3.Risk assessment - methods 4.Models, Statistical 5.Guidelines I.Joint FAO/WHO Secretariat on Risk Assessment

of Microbiological Hazards in Food II.Series.

ISBN 92 5 104940 8 (FAO) ISSN 1726-5274 (LC/NLM classification: QW 85)

All rights reserved. Requests for permission to reproduce or translate the material contained in this publication - whether for sale or for noncommercial distribution - should be addressed to the Chief, Publishing Management Service, Information Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy, or by e-mail to <u>copyright@fao.org</u> or to Publications, Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland, or by facsimile to +41 22 791 4806, or by email to <u>permissions@who.int</u>.

© FAO/WHO 2003

Abbreviations used in the text	v
Foreword	vii
Preface	ix
Acknowledgements	х
Contributors	xi
1. INTRODUCTION	1
1.1 Background	1
1.2 Hazard characterization in context	2
1.3 Purpose of the guidelines	3
1.4 Scope	4
2. THE PROCESS OF HAZARD CHARACTERIZATION	5
2.1 Context	5
2.2 Principles	6
3. PROCESS INITIATION	7
4. DATA COLLECTION AND EVALUATION	9
4.1 Human studies	9
4.1.1 Outbreak investigations	9
4.1.2 Surveillance and annual health statistics	12
4.1.3 Volunteer feeding studies	13
4.1.4 Biomarkers	14
4.1.5 Intervention studies	15
4.2 Animal studies	16
4.3 In vitro studies	17
4.4 Expert elicitation	18
4.5 Data evaluation	18
5. DESCRIPTIVE CHARACTERIZATION	21
5.1 Information related to the disease process	21
5.2 Information related to the pathogen	24
5.3 Information related to the host	24
5.4 Information related to the matrix	25
5.5 Dose-response relationship	26

6. DOSE-RESPONSE MODELLING	
6.1 The infectious disease process	27
6.1.1 Exposure	28
6.1.2 Infection	29
6.1.3 Illness	29
6.1.4 Sequelae and mortality	30
6.2 Modelling concepts	30
6.2.1 Threshold vs non-threshold mechanisms	31
6.2.2 Independent action vs synergistic action	32
6.3 Selection of models	32
6.3.1 Dose-infection models	33
6.3.2 Infection-illness models	33
6.3.3 Dose-illness models	35
6.3.4 Sequelae and mortality	35
6.4 Extrapolation	35
6.4.1 Low dose extrapolation	35
6.4.2 Extrapolation in the pathogen-host-matrix triangle	36
6.5 Fitting dose response models to data	
6.5.1 Fitting method	37
6.5.2 Selection of the best fitting model or models	38
6.5.3 Uncertainty analysis	39
7. Review	41
7.1 Validation of dose-response models	41
7.2 Peer and public review	42
8. PRESENTATION OF RESULTS	45
9. References cited	47
APPENDIXES	
A. Outline of information to include in a hazard characterization	51
B. Glossary	53

B. Glossary

ABBREVIATIONS USED IN THE TEXT

CAC	FAO/WHO Codex Alimentarius Commission
CFU	Colony forming unit
FAO	Food and Agriculture Organization of the United Nations
FDA	Food and Drug Administration [of the United States of America]
GDWQ	Guidelines for Drinking Water Quality
JEMRA	Joint FAO/WHO Expert Meetings on Microbiological Risk Assessment
MCMC	Markov chain Monte Carlo methods
MRA	Microbiological risk assessment
PCR	Polymerase chain reaction
USDA	United States Department of Agriculture
WHO	World Health Organization

A glossary of technical terms used in the text appears as Appendix B.

FOREWORD

The Members of the Food and Agriculture Organization of the United Nations (FAO) and of the World Health Organization (WHO) have expressed concern regarding the level of safety of food at both national and the international levels. Increasing foodborne disease incidence over the last decades seems, in many countries, to be related to an increase in disease caused by microorganisms in food. This concern has been voiced in meetings of the Governing Bodies of both Organizations and in the Codex Alimentarius Commission. It is not easy to decide whether the suggested increase is real or an artefact of changes in other areas, such as improved disease surveillance or better detection methods for microorganisms in foods. However, the important issue is whether new tools or revised and improved actions can contribute to our ability to lower the disease burden and provide safer food. Fortunately, new tools that can facilitate actions seem to be on their way.

Over the past decade, risk analysis – a process consisting of risk assessment, risk management and risk communication – has emerged as a structured model for improving our food control systems, with the objectives of producing safer food, reducing the numbers of foodborne illnesses and facilitating domestic and international trade in food. Furthermore, we are moving towards a more holistic approach to food safety, where the entire food chain needs to be considered in efforts to produce safer food.

As with any model, tools are needed for the implementation of the risk analysis paradigm. Risk assessment is the science-based component of risk analysis. Science today provides us with in-depth information on life in the world we live in. It has allowed us to accumulate a wealth of knowledge on microscopic organisms, their growth, survival and death, even their genetic make-up. It has given us an understanding of food production, processing and preservation, and the link between the microscopic and the macroscopic worlds and how we can benefit from as well as suffer from these microorganisms. Risk assessment provides us with a framework for organizing all this data and information and to better understand the interaction between microorganisms, foods and human illness. It provides us with the ability to estimate the risk to human health from specific microorganisms in foods and gives us a tool with which we can compare and evaluate different scenarios, as well as identify what types of data are necessary for estimating and optimizing mitigating interventions.

Microbiological risk assessment (MRA) can be considered a tool for use in the management of the risks posed by foodborne pathogens and in the elaboration of standards for food in international trade. However, undertaking an MRA, particularly quantitative MRA is recognized as a resource_intensive task requiring a multidisciplinary approach. Yet

预览已结束,完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5 30164

