The Immunological Basis for Immunization Series

Module 23: Influenza Vaccines

Immunization, Vaccines and Biologicals

The immunological basis for immunization series: module 23: influenza vaccines (Immunological basis for immunization series; module 23)

ISBN 978-92-4-151305-0

© World Health Organization 2017

Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

Under the terms of this licence, you may copy, redistribute and adapt the work for noncommercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: "This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition".

Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization.

Suggested citation. The immunological basis for immunization series: module 23: influenza vaccines. Geneva: World Health Organization; 2017 (Immunological basis for immunization series; module 23). Licence: CC BY-NC-SA 3.0 IGO.

Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris.

Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing.

Third-party materials. If you wish to reuse material from this work that is attributed to a third party, such as tables, figures or images, it is your responsibility to determine whether permission is needed for that reuse and to obtain permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user.

General disclaimers. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of WHO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by WHO in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall WHO be liable for damages arising from its use.

The Immunological Basis for Immunization Series

Module 23: Influenza Vaccines

Immunization, Vaccines and Biologicals

Contents

Abbreviations and acronyms	ii
Preface	iii
	4
1. Influenza virus and disease	I 1
1.2 Influenza diagona and nothe comparie	I 2
1.2 Influenza disease and pathogenesis	3
1.5 Influenza diagnosis	4 0
1.5 Immunological reanonces to natural infection by influenza viewees	0 10
1.5 Immunological responses to infaction by influenza viruses	10
1.5.1 Humanal (B call) immuna responses to infaction	IU 11
1.5.2 Call mediated (T call) immune responses to infection	11 12
1.5.5 Cen-mediated (1 cen) minute responses to miection	12
2. Influenza vaccines	14
2.1 Inactivated influenza vaccines (IIVs)	15
2.1.1 Measurement of protection after immunization with IIV	17
2.1.2 Antibody responses to IIV	18
2.1.3 Cell-mediated immune responses to IIV	19
2.1.4 Availability of IIVs	20
2.1.5 IIV safety and contraindications	20
2.2 Live attenuated influenza vaccines (LAIVs)	
2.2.1 Routes of administration and dose	
2.2.2 Immunological responses to LAIVs	
2.2.3 Antibody responses to LAIV	
2.2.4 Cell-mediated immune responses to LAIV	
2.2.5 Availability of LAIVs	
2.2.6 LAIV safety, virus shedding, stability, transmission and	
adverse events post-immunization	31
3 Influenza viacoina nauformanaa	20
3.1 IIV vaccine officery and effectiveness	32
3.2 LAIV vaccine officacy and effectiveness	33
5.2 LATV vacchie enfeacy and effectiveness	55
4. Influenza vaccine use	37
4.1 Influenza vaccine policy and programmatic use	37
4.2 Future prospects for improving immune responses with new	
influenza vaccines	38
	_
5. Keterences	39
Acknowledgements	63

Abbreviations and acronyms

APC	Antigen presenting cells	MP
att	Attenuated (property of live-attenuated influenza	M2 NA
ca	Cold-adapted (property of live-attenuated influenza vaccines)	NIC
CI	Confidence interval	OR
CMI	Cell-mediated immunity	ORS
EID	Egg infectious dose	PA
FFU	Fluorescent focus units	PAMPs
GBS	Guillain-Barré syndrome	
GISRS	Global Influenza Surveillance and Response System	PB1 PB2
HA	Hemagglutinin	PRRs
HA1	Globular head region of the hemagglutinin protein	RCT RIDT
HAI	Hemagglutination inhibition	RT-PCI
HGR	High-growth reassortant	SAGE
HLA	Human leukocyte antigen	CDID
IIV	Inactivated influenza vaccine	SKID SV
ILI	Influenza-like illness	
LAIV	Live attenuated influenza vaccine	ts
Μ	Matrix protein	
MDCK	Madin-Darby canine kidney	VALKS
MDV	Master donor virus	VE
μg	Microgram	wнО
MN	Microneutralization	

MP	Matrix protein
M2	Matrix protein 2
NA	Neuraminidase
NIC	National Influenza Centre
NP	Nucleoprotein
OR	Odds ratio
ORS	Ocular respiratory syndrome
PA	Polymerase acidic protein
PAMPs	Pathogen-associated molecular patterns
PB1	Polymerase basic protein 1
PB2	Polymerase basic protein 2
PRRs	Pattern recognition receptors
RCT	Randomized controlled trial
RIDT	Rapid influenza diagnostic test
RT-PCR	Reverse transcription- polymerase chain reaction
SAGE	Strategic Advisory Group of Experts on immunization
SRID	Single radial immunodiffusion
SV	Sub-virion (includes both split and purified surface antigen vaccines)
ts	Temperature-sensitive (property of live-attenuated influenza vaccines)
VAERS	Vaccine Adverse Event Reporting System
VE	Vaccine effectiveness
WHO	World Health Organization

Preface

This module is part of the WHO series *The Immunological Basis for Immunization*, which was initially developed in 1993 as a set of eight modules, comprising one module on general immunology and seven modules each devoted to one of the vaccines recommended for the Expanded Programme on Immunization, i.e. vaccines against diphtheria, measles, pertussis, polio, tetanus, tuberculosis and yellow fever. Since then, this series has been updated and extended to include other vaccines of international importance.

The main purpose of the modules is to provide national immunization managers and vaccination professionals with an overview of the scientific basis of vaccination against a range of important infectious diseases. The modules developed since 1993 continue to be vaccine-specific, reflecting the biological differences in immune responses to the individual pathogens and the differing strategies employed to create the best possible level of protection that can be provided by vaccination. The modules also serve as a record of the immunological basis for the WHO recommendations on vaccine use, published in the WHO vaccine position papers.¹

This module concerns vaccines against influenza, an infectious disease of worldwide public health importance which presents unique immunological challenges. The vaccines are also unique, their content necessitating reformulation prior to each annual influenza season and requiring annual re-vaccination. The module answers the questions that stem from the exceptional nature of the influenza viruses and their capacity for rapid mutation and antigenic change, and the need to align vaccine development with those characteristics, now and in the future. The existing types of influenza vaccines and the immune responses to them are described, and future needs and prospects are outlined.

¹ See: http://www.who.int/immunization/documents/positionpapers_intro/en/index.html, accessed 10 Aug 2017.

预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_26227