

Overview of intervention classes and prototype/products under Vector Control Advisory Group (VCAG) review for assessment of public health value¹

AS OF 1 MARCH 2020

This table is a living document and will be revised and updated periodically to reflect the status of products under VCAG review. Please note, in some instances there are more than one prototype / product that fall under a intervention class.² You can find more information on the WHO evaluation process for vector control products at: http://www.who.int/malaria/publications/atoz/evaluation-process-vector-control-products/en/ and on VCAG at: http://www.who.int/vector-control/vcag/en/.

INTERVENTION TYPE	DESCRIPTION	INTERVENTION CLASS	EXAMPLES OF PROTOTYPE / PRODUCT	TARGET ORGANISM (GENUS AND/OR SPECIES)®	TARGET DISEASE	STATUS IN WHO EVALUATION PROCESS	NOTES
Insecticide- treated nets (ITN) ^b	Mosquito nets treated with chemicals either as single products or combinations ^c	Pyrethroid plus non-pyrethroid insecticide net	Interceptor® G2 (pyrethroid- chlorfenapyr)	<i>Anopheles</i> mosquitoes	Malaria	RCT protocols for two sites reviewed by VCAG in November 2018. Trial in Tanzania started. Product converted to PQ Listing in January 2018.	Nets with non-pyrethroid active ingredients or synergists are anticipated to have enhanced protective efficacy in terms of reducing or preventing infection and/or disease in humans in areas where local vectors have developed substantive pyrethroid resistance. Additional public health value when compared to pyrethroid-only nets needs to be assessed.
		Pyrethroid plus insect growth regulator net	Royal Guard® LN (pyrethroid- pyriproxyfen)	<i>Anopheles</i> mosquitoes	Malaria	RCT protocols for two sites reviewed by VCAG in November 2018. Trial in Tanzania started. Product prequalified March 2019.	
		Pyrethroid plus piperonyl butoxide (PBO) net	Olyset® Plus	<i>Anopheles</i> mosquitoes	Malaria	Based on the epidemiological findings from one cluster randomized controlled trial and the need to deploy products that are effective against pyrethroid-resistant	

1. Public health value is defined as: proven protective efficacy to reduce or prevent infection and/or disease in humans.

2. An intervention class in vector control is a group of products that share a common entomological effect by which it reduces pathogen transmission and thus reduces infection and/or disease in humans. For products in a class not currently recommended by WHO, efficacy trials with a 'first in class' product must generate epidemiological evidence of protective efficacy against infection and/or disease. The evidence is then reviewed by VCAG to validate the public health value of the product class. This validation forms the basis of a WHO policy recommendation for the new intervention class. An intervention class may contain one or more target product profiles (TPPs) depending on the intended effect of the product(s) and claim(s).

INTERVENTION TYPE	DESCRIPTION	INTERVENTION CLASS	EXAMPLES OF PROTOTYPE / PRODUCT	TARGET ORGANISM (GENUS AND/OR SPECIES)°	TARGET DISEASE	STATUS IN WHO EVALUATION PROCESS	NOTES
Insecticide- treated nets (ITN) (cont.)	Mosquito nets treated with chemicals either as single products or combinations	Pyrethroid plus piperonyl butoxide (PBO) net (cont.)				mosquitoes, pyrethroid-PBO nets were given an interim endorsement as a new WHO class of vector control products. ^d	
	(cont.)					Further evidence on pyrethroid-PBO nets is required to support the refinement of WHO guidance regarding conditions for the deployment of products in this class. VCAG will review further epidemiological trial data as soon as they become available (planned for first half of 2020). Pyrethroid-PBO nets were converted to PQ listings during 2017/18.	
Spatial repellents	Devices that release volatile chemical into the air and prevent human-vector contact within the treated space	Spatial Repellents	Transfluthrin passive emanator	<i>Anopheles</i> and <i>Aedes</i> mosquitoes	Malaria and dengue	VCAG reviewed and advised on two RCT protocols, one for control of <i>Anopheles</i> and one for control of <i>Aedes</i> mosquitoes. Study results from one trial were presented in May 2019. Results from second trial are forthcoming. Two other protocols have been reviewed by VCAG and another will be reviewed at the November 2019 VCAG meeting.	The term "spatial repellency" is used here to refer to a range of insect behaviours induced by airborne chemicals that result in a reduction in human-vector contact and therefore personal protection. The behaviours can include movement away from a chemical stimulus, interference with host detection (attraction inhibition) and feeding response.
Attractive targeted baits	Devices that attract and kill disease vectors	Attractive Targeted Sugar Bait (ATSB)	ATSB®, mosquitoes' bait station	<i>Anopheles</i> mosquitoes	Malaria	Three RCT protocols reviewed by VCAG in May 2019.	

INTERVENTION TYPE	DESCRIPTION	INTERVENTION CLASS	EXAMPLES OF PROTOTYPE / PRODUCT	TARGET ORGANISM (GENUS AND/OR SPECIES)°	TARGET DISEASE	STATUS IN WHO EVALUATION PROCESS	NOTES
Peridomestic combined repel and lure devices	Devices placed around a house and/or its surroundings	Repel and lure strategy for malaria control	The approach consists of two devices: 1) repels mosquitoes from houses and immediate surroundings (the "push") and 2) lures mosquitoes towards odor-baited traps (the "pull")	<i>Anopheles</i> mosquitoes	Malaria	Concept and preliminary elements of RCT reviewed by VCAG in May 2018.	
Vector traps for disease management	Devices that lure and kill vectors	Adulticidal oviposition and larvicidal traps	Vector traps including AGO trap, TNK trap and ALO	<i>Ae. aegypti</i> and <i>Ae. albopictus</i> mosquitoes	<i>Aedes-</i> borne arboviral diseases	ALO concept reviewed in May 2019.	
		Auto- dissemination devices	In2Care® Mosquito Trap	<i>Ae. aegypti</i> and <i>Ae. albopictus</i> mosquitoes	<i>Aedes-</i> borne arboviral diseases	VCAG reviewed one RCT protocol in April 2019.	
Genetic manipulation of vectors for disease control Manipu	Reduction or alteration of vector populations through genetic manipulation	Population reduction – gene-drive approach	CRISP/Cas9 - suppression construct	<i>An. gambiae</i> mosquitoes	Malaria	Initial laboratory data shared with VCAG.	
		Population alteration (also known as population replacement or modification) – gene-drive approach	Cas9- based gene drive - anti- <i>P. falciparum</i> and/ or anti- <i>P. vivax</i> constructs	An. gambiae and An. stephensi mosquitoes	Malaria	Initial laboratory data shared with VCAG.	
Sterile insect technique (SIT) combined with microbial infection	Radiation based sterility for mosquito population reduction and bacterial infection to prevent virus transmission	Sterile Insect Technique / Incompatible Insect Technique	Sterilized male Ae. aegypti and Ae. albopictus infected with Wolbachia spp.	<i>Ae. aegypti</i> and <i>Ae. albopictus</i> mosquitoes	<i>Aedes-</i> borne arboviral diseases	VCAG reviewed one RCT protocol in February 2019.	

INTERVENTION TYPE	DESCRIPTION	INTERVENTION CLASS	EXAMPLES OF PROTOTYPE / PRODUCT	TARGET ORGANISM (GENUS AND/OR SPECIES)°	TARGET DISEASE	STATUS IN WHO EVALUATION PROCESS	NOTES
Microbial control of human pathogens in adult vectors	Introduction of micro-organisms into vectors	Wolbachia- based population alteration	wMel strain Wolbachia	<i>Ae. aegypti</i> mosquitoes	<i>Aedes-</i> borne arboviral diseases	One RCT trial is ongoing. Estimated to be completed in 2020.	
Systemic insecticides and endectocides	Systemic insecticide treatment of livestock to reduce or prevent transmission of pathogens transmitted to humans	Systemic livestock treatment for vector control	Fipronil bolus	<i>Phlebotomus</i> sandflies	Leishmaniasis	VCAG reviewed one RCT protocol in 2017.	Systemic insecticides also reduce the livestock ectoparasite burden.
	Mass drug administration of an endectocide to humans +/- livestock to reduce malaria transmission	Endectocides	lvermectin repurposed for malaria	<i>Anopheles</i> mosquitoes	Malaria*	VCAG reviewed study description and justification in May 2019. VCAG will review full protocol during November 2019 VCAG meeting.	* Plus a direct benefit in treatment of human scabies, lice and some soil transmitted helminths
Housing modification	Modifications made to a house to decrease exposure of inhabitants to vectors	Lethal house lures	In2Care®EaveTube with electro- statically charged coating for delivery of powder formu- lations	<i>Anopheles</i> mosquitoes	Malaria	VCAG reviewed one RCT protocol. Trial completed, results being shared at November 2019 VCAG meeting.	

预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_25941

Acronyme

