Vaboratory Manual for the Diagnosis of Whooping Cough caused by Bordetella pertussis/ Bordetella parapertussis

Update 2014

Immunization, Vaccines and Biologicals

Laboratory Manual for the diagnosis of Whooping Cough caused by Bordetella pertussis/ Bordetella parapertussis

Update 2014

Immunization, Vaccines and Biologicals

The Department of Immunization, Vaccines and Biologicals thanks the donors whose unspecified financial support has made the production of this document possible.

This document was produced for Immunization, Vaccines and Biologicals, World Health Organization, by Sophie Guillot and Nicole Guiso, Institut Pasteur, Unité Prévention et Thérapie Moléculaires des Maladies Humaines, Centre National de Référence de la Coqueluche et autres Bordetelloses, Paris, France; Marion Riffelmann and Carl Heinz Wirsing von Konig, Labor: Medizin Krefeld MVZ, HELIOS Klinikum Krefeld, Krefeld, Germany

> Ordering code: WHO/IVB/14.03 Printed: June 2014

This publication revises the original version (WHO/IVB/04.14) published in September 2004 and revised in March 2007

This publication is available on the Internet at: www.who.int/vaccines-documents/

Copies of this document as well as additional materials on immunization, vaccines and biologicals may be requested from: World Health Organization Department of Immunization, Vaccines and Biologicals CH-1211 Geneva 27, Switzerland • Fax: + 41 22 791 4227 • Email: vaccines@who.int •

© World Health Organization 2014

All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 3264; fax: +41 22 791 4857; email: <u>bookorders@who.int</u>). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; email: permissions@who.int).

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

The named authors alone are responsible for the views expressed in this publication.

Printed by the WHO Document Production Services, Geneva, Switzerland

Contents

Abbreviations & acronymsv			
1. Inti	I. Introduction1		
2. General considerations on whooping cough laboratory diagnosis7			
3. Direct diagnosis9			
4. Indirect diagnosis14			
Annex	1: Collection of nasopharyngeal aspirate (NPA) or swabs (NPS)15		
Annex	2: Reagan Lowe medium18		
Annex	3: Bordet Gengou medium20		
Annex	4: Serotyping of B. pertussis23		
Annex	5: Storage of Bordetella spp. bacteria25		
Annex	6: Real-time PCR using LightCycler® technology for amplification of the insertion sequence IS48127		
Annex	7: Real-time PCR using LightCycler® technology for amplification of the insertion sequence IS1001		
Annex	8: Measurement of anti-pertussis toxin antibodies by ELISA		

Abbreviations & acronyms

AC-Hly	adenylate cyclase-haemolysin toxin
Ap	acellular pertussis
BG	Bordet Gengou (medium)
BGB	Bordet Gengou with blood
BSA	bovine serum albumin
DFA	direct fluorescent antibody
DNA	deoxyribonucleic acid
DTaP	diphtheria-tetanus acellular pertussis
DTP	diphtheria-tetanus-pertussis
DTwP	diphtheria-tetanus-whole cell pertussis
ELISA	enzyme-linked immunosorbent assay
EQA	external quality assessment
FHA	filamentous haemagglutinin
HPLC	high-performance liquid chromatography
Ig	immunoglobulin
IPC	internal process control
MLD	minimum level of detection
NIBSC	National Institute for Biological Standards and Control
NPA	nasopharyngeal aspirates
NPS	nasopharyngeal swabs
PBS	phosphate buffered saline
PCR	polymerase chain reaction
PEG	polyethylene glycol
PFGE	pulsed field gel-electrophoresis
PRN	pertactin
РТ	pertussis toxin

Reagan Lowe (medium)
respiratory syncytial virus
real-time polymerase chain reaction
saccharose-phosphate-glutamate (solution)
species
tracheal colonization factor
tracheal cytotoxin
uracil-DNA glycosylase
United States of America
vir-activated genes
vir-repressed genes
World Health Organization
whole-cell pertussis

1. Introduction

Whooping cough is a worldwide infectious disease caused by the bacteria *Bordetella pertussis* and *Bordetella parapertussis*. It is a respiratory disease occurring after transmission of the bacteria from person- to-person in airborne droplets. The bacteria are highly infectious and unprotected close contacts are liable to become infected. Incidence is highest in children under five, except where infant vaccination programmes have been effective and a shift has occurred to adolescents.

Whooping cough is not only a childhood disease. It is dramatic for neonates and infants but can also be very severe for children and adults. For over 40 years, whole-cell pertussis vaccines have been very effective, preventing around 760 000 deaths worldwide every year. Nevertheless, pertussis disease continues to impose a high burden — there are still 50 million cases of pertussis disease and 300 000 deaths annually, mostly among infants.

Even in high-coverage countries, pertussis disease continues to cause severe illness and death among neonates and infants too young to have completed the primary vaccination series.

Active primary immunization against *B. pertussis* infection is recommended, with three doses of a vaccine consisting of either a suspension of killed bacteria (whole-cell pertussis (wP) or acellular pertussis (aP) preparations that contain 1–5 different components of *B. pertussis*. These are usually given in combination with diphtheria and tetanus toxoids adsorbed on aluminium salts (DTwP or DTaP). In terms of severe adverse effects aP and wP vaccines appear to have the same high level of safety; reactions are less commonly associated with aP vaccines. Similar high efficacy levels (more than 80%) are obtained with the best aP and wP vaccines, although the level of efficacy may vary within each group. Protection is greater against severe disease and begins to wane after about three years. Acellular pertussis vaccines do not protect against infection by *B. parapertussis*. The need and timing for additional booster doses

预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_24860

