

Global protocol

for measuring fatty acid profiles of foods, with emphasis on monitoring trans-fatty acids originating from partially hydrogenated oils

World Health Organization

Global protocol

for measuring fatty acid profiles
of foods, with emphasis on
monitoring *trans*-fatty acids
originating from partially
hydrogenated oils

World Health
Organization

Global protocol for measuring fatty acid profiles of foods, with emphasis on monitoring trans-fatty acids originating from partially hydrogenated oils

ISBN 978-92-4-001804-4 (electronic version)

ISBN 978-92-4-001805-1 (print version)

© World Health Organization 2020

Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; <https://creativecommons.org/licenses/by-nc-sa/3.0/igo>).

Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: "This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition".

Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization (<http://www.wipo.int/amc/en/mediation/rules/>).

Suggested citation. Global protocol for measuring fatty acid profiles of foods, with emphasis on monitoring trans-fatty acids originating from partially hydrogenated oils. Geneva: World Health Organization; 2020. Licence: [CC BY-NC-SA 3.0 IGO](https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

Cataloguing-in-Publication (CIP) data. CIP data are available at <http://apps.who.int/iris>.

Sales, rights and licensing. To purchase WHO publications, see <http://apps.who.int/bookorders>. To submit requests for commercial use and queries on rights and licensing, see <http://www.who.int/about/licensing>.

Third-party materials. If you wish to reuse material from this work that is attributed to a third party, such as tables, figures or images, it is your responsibility to determine whether permission is needed for that reuse and to obtain permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user.

General disclaimers. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of WHO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by WHO in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall WHO be liable for damages arising from its use.

Design and layout by minimum graphics

Contents

Acknowledgements	v
Acronyms	vi
1. Clinical relevance	1
2. Dietary trans fats	2
2.1 Sources	2
2.2 Fatty acid nomenclature and shorthand notations	2
3. Goal, scope and general approach	4
3.1 Goal	4
3.2 Scope	4
3.3 General approach	5
3.3.1 Sample collection	5
3.3.2 Fat extraction	5
3.3.3 GC analysis of fatty acids	5
4. Sampling plan, sample collection and sample storage	9
4.1 Sampling plan	9
4.2 Collection of food samples	9
4.3 Number of brands and weight of representative samples	10
4.4 Inventory of foods purchased	10
4.5 Storage of food samples	10
5. Analytical methodology	11
5.1 Safety precautions	11
5.2 Laboratory equipment	11
5.3 Laboratory reagents and solvents	12
5.4 Lipid standards	13
5.5 Preparation of food samples for analysis	14
5.5.1 Homogenization of food samples	14
5.5.2 Target weight of homogenized composite subsample for GC analysis	14

5.5.3 Storage of the remainder of the homogenized composite	15
5.6 Extraction of fat and gravimetric determination of fat content	15
5.6.1 Category 1 foods: fats and oils (salad oils, cooking oils, baking fats, shortenings, ghee)	15
5.6.2 Category 2 foods: margarines and other spreads	15
5.6.3 Category 3 and 4 foods: packaged foods and ready-to-eat foods containing no materials from ruminant sources	16
5.6.4 Category 3 and 4 foods: packaged and ready-to-eat foods containing a mix of fats and oils from non-ruminant and ruminant sources	17
5.7 Methylation of the extracted fat	18
5.8 Gas chromatography analysis of FAMEs	19
5.8.1 GC operating parameters for samples containing no ruminant FAMEs (adopted from AOCS Official Method Ce 1h-05, revised 2017 (16))	19
5.8.2 GC operating parameters for samples containing a mix of FAMEs from non-ruminant and ruminant sources (adopted from AOCS Official Method Ce 1j-75, revised 2017 (19))	20
5.8.3 Checks for ensuring suitability of GC operating parameters for <i>cis-trans</i> FAME analysis	20
5.8.4 GC of prepared food FAME samples	21
5.8.5 Identification of GC FAME peaks	21
5.8.6 Criteria for deciding the acceptability of GC runs	21
5.8.7 GC-FID response and minimum detection limit	21
5.9 Calculations of fat content and fatty acid composition	22
5.10 Reporting data	24
5.11 Performance check	24
6. Quality assurance and control	25
6.1 Training of analysts	25
6.2 Criteria for selecting a laboratory to conduct TFA analysis	25
7. References	27
Annex 1	29
Annex 2	30
Annex 3	32
Annex 4	33
Tables and figures	36

Acknowledgements

The development of this protocol document was coordinated by Dr Rain Yamamoto (World Health Organization). WHO is most grateful to Dr Nimal Ratnayake (formerly Health Canada) for providing the extensive technical inputs and indispensable advice throughout the development process.

Critical review and valuable inputs were also provided by Ayesha Ratnayake (University of Ottawa), Eleonora Swist (Health Canada), Dr Isabelle DeMonty (Health Canada), Dr Katherine Phillips (Virginia Tech), Dr Hubert Vesper (United States Centers for Disease Control and Prevention), Dr Laura Cobb (Resolve to Save Lives), Lindsay Steele (Resolve to Save Lives), Dr Chizuru Nishida (World Health Organization), Dr Francesco Branca (World Health Organization) and Dr Holly Rippin (World Health Organization European Centre for Prevention and control of Noncommunicable Diseases).

Special acknowledgement is also given to the following experts who participated in a technical consultation and provided instrumental inputs into this document:

Dr Anchalee Chittamma (Ramathibodi Hospital, Mahidol University, Faculty of Medicine, Thailand), Dr Pierluigi Delmonte (United States Food and Drug Administration, Center for Food Safety and Applied Nutrition), Dr Diana Doell (United States Food and Drug Administration, Office of Food Additive Safety), Ms Rosemarie Dumag (Food and Nutrition Research Institute, Service Laboratory, Philippines), Mr Paul Finglas (Quadram Institute Bioscience, United Kingdom), Dr Renuka Jayatissa (Ministry of Health, Nutrition and Indigenous Medicine, Department of Nutrition, Medical Research Institute, Sri Lanka), Dr Vincent Lal (University of the South Pacific, Faculty of Science, Technology and Environment, Fiji), Dr Carla Motta (National Institute of Health, Food and Nutrition Department, Portugal), Dr Rafael Monge Rojas (Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Costa Rica), Dr Susana Pereira Casal Vicente (University of Porto, Portugal), Dr Shah Mahfuzur Rahman (Institute of Public Health, Food Safety Unit, Bangladesh), Dr Steen Stender (University of Copenhagen, Denmark), Dr Omer Mukhtar Tarar (Pakistan Council of Scientific and Industrial Research, Food Technology Section, Pakistan), Dr Aziz Tekin (Ankara University, Faculty of Engineering, Department of Food Engineering, Turkey) and Susanne Westenbrink (National Institute of Health and the Environment, Netherlands).

Acknowledgement is also made to Dr Andina Faragher from Biotext in Australia for technical editing of this protocol.

Acronyms

AOCS	American Oil Chemists' Society
C21:0 TAG	triheneicosanoin
CLA	conjugated linoleic acid
FAME	fatty acid methyl ester
FID	flame ionization detector
GC	gas chromatography
IP-TFA	industrially produced <i>trans</i> -fatty acid
IS	internal standard
IUPAC	International Union of Pure and Applied Chemistry
MUFA	monounsaturated fatty acid
PHO	partially hydrogenated oil
PUFA	polyunsaturated fatty acid
RP-TFA	ruminant product <i>trans</i> -fatty acid
SFA	saturated fatty acid
TCF	theoretical correction factor
TLC	thin-layer chromatography
TFA	<i>trans</i> -fatty acid

预览已结束，完整报告链接和二维码如下：

https://www.yunbaogao.cn/report/index/report?reportId=5_24165

