Children and digital dumpsites

E-waste exposure and child health

WEB ANNEX

Literature review on the health effects of exposure to e-waste

WHI WHE I

Children and digital dumpsites

E-waste exposure and child health

WEB ANNEX

Literature review on the health effects of exposure to e-waste

Children and digital dumpsites: e-waste exposure and child health. Web Annex. Literature review on the health effects of exposure to e-waste

ISBN 978-92-4-002410-6 (electronic version)

© World Health Organization 2021

Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https:// creativecommons.org/licenses/by-nc-sa/3.0/igo).

Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: "This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition".

Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization (http://www.wipo.int/amc/en/mediation/rules/).

Suggested citation. Web Annex. Literature review on the health effects of exposure to e-waste. In: Children and digital dumpsites: e-waste exposure and child health. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO.

Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris.

Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing.

Third-party materials. If you wish to reuse material from this work that is attributed to a third party, such as tables, figures or images, it is your responsibility to determine whether permission is needed for that reuse and to obtain permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user.

General disclaimers. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of WHO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by WHO in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall WHO be liable for damages arising from its use.

Contents

Table 1. Short-term health effects, stress, injuries. 2
Table 2. Adverse neonatal outcomes. 3
Table 3. Short placental telomere 5
Table 4. Growth 6
Table 5. Neurodevelopment, learning and behavioural outcomes. 7
Table 6. Immune function 8
Table 7. Thyroid and endocrine system function 10
Table 8. Lung function, respiratory function and asthma 12
Table 9. Airway antimicrobial activity. 13
Table 10. Cardiovascular risk factors 14
Table 11. Hearing loss 15
Table 12. Olfactory memory. 16
Table 13. Liver function 17
Table 14. Impaired blood coagulation 18
Table 15. Fasting blood glucose levels. 19
Table 16. Male reproductive disorders, genital diseases and sperm quality 20
Table 17. Kidney injury markers. 21
Table 18. DNA damage. 22
Table 19. Gene expression 23
Table 20. Oxidative stress 24
References

Acknowledgements

This annex was compiled by Julia Gorman (WHO consultant) and Marie-Noël Bruné Drisse (WHO). Final editing by John Dawson, Nairobi, Kenya. This publication was made possible with financial support from the Swedish International Development Cooperation Agency (Sida) and the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety, Germany.

Table 1. Short-term health effects, stress, injuries

Author	Exposure location	Exposure setting	Exposed population	Primary toxicant	Health outcome
Decharat S (1)	Nakhon Si Thammarat province, Thailand	Informal recycling workers versus office staff	Informal recycling workers (aged 18–57 years). Exposed (n=54), control (n=25)	Mercury	Urinary and airborne mercury levels significantly correlated ($r = 0.552$, $P < 0.001$). The prevalence of insomnia (46.8%), muscle atrophy (36.7%), weakness (24.1%) and headaches were all statistically higher among the exposed group ($P < 0.001$).
Feldt T et al. <i>(2)</i>	Agbogbloshie, Ghana	Informal recycling workers vs residents of control urban area	Informal recycling workers. Exposed (<i>n</i> =72), control (<i>n</i> =40)	PAHs	PAHs metabolite significantly higher in exposed individuals compared to non- exposed individuals. Urine concentrations: 1-OH-phenanthrene 0.85 vs 0.55 μ g/g creatinine ($P < 0.001$); 2-/9-OH-phenanthrene 0.55 vs 0.37 μ g/g creatinine ($P = 0.005$); 3-OH-phenanthrene 0.99 vs 0.63 μ g/g creatinine ($P < 0.001$); 4-OH-phenanthrene 0.22 vs 0.11 μ g/g creatinine ($P < 0.001$); 1-OH-pyrene 1.33 vs 0.54 μ g/g creatinine ($P < 0.001$). Higher urinary PAH levels found in individuals exposed to e-waste recycling processes.
Yohannessen K et al. (3)	Santiago and Temuco, Chile	Informal vs formal recycling workers	Informal recycling workers (n=78), formal recycling workers (n=15)	Not assessed	Workers generally reported good health; prevalence of chronic diseases reported was comparable to national levels. Few health differences reported between informal and formal workers.

PAH: polycyclic aromatic hydrocarbon.

Table 2. Adverse neonatal outcomes

Author	Exposure location	Exposure setting	Exposed population	Primary toxicant	Health outcome
Guo Y et al. <i>(4)</i>	Guiyu, China	Ecological: exposed town vs control town	Mother—infant pairs. Exposed (n=101), control (n=119)	Lead, chromium, cadmium, nickel	Placental lead: 301.43 vs 165.82 ng/g ($P = 0.01$); nickel: 7.64 vs 14.30 ng/g ($P = 0.00$). No differences in cadmium or chromium. No differences in birth weight, birth length or gestational age. Negative correlation between placental nickel and gestational age. Correlation between blood lead and residence in e-waste recycling area.
Guo Y et al. <i>(5)</i>	Guiyu, China	Ecological: exposed town vs control town	Mother—infant pairs. Exposed (n=103), control (n=80)	PAHs	Cord blood total PAH: 108.05 vs 79.63 ppb ($P = 0.003$); chromium: 1.57 vs 1.05 ppb ($P = 0.049$); BaP: 2.14 vs 1.64 ppb ($P = 0.001$); DahA: 12.26 vs 11.59 ppb ($P = 0.031$). Increased BaA, chrysene and BaP in neonates with adverse birth outcomes ($P < 0.05$). Maternal PAH exposure linked to adverse effects on neonatal health.
Wu K et al. <i>(6)</i>	Guiyu, China	Ecological: exposed town vs control town	Mother—infant pairs. Exposed (n=102), control (n=51)	PBDEs	Cord blood total PBDE: 13.84 vs 5.23 ng g ⁻¹ lipid ($P < 0.05$). No correlation found between PBDEs and neonate length, gestational age or sex.
Wu K et al. <i>(7)</i>	Guiyu, China	Informal recycling	Mother—infant pairs. Exposed (n=108), control (n=59)	PCBs	Cord blood PCBs: 338.56 vs 140.16 ng/g, correlated with mothers' recycling activity. Higher total PCBs with adverse birth outcomes ($t = -2.26$, $P = 0.03$). Negative associations between individual PCB congeners and neonatal height, neonatal weight, Apgar score, gestational age and BMI (all $P < 0.05$).
Wu K et al. <i>(8)</i>	Guiyu, China	Informal recycling	Pregnant women. Exposed (n=108), control (n=59)	PFOA	Serum PFOA: 16.95 vs 8.7 ng/mL ($P < 0.001$). Negative association between PFOA and spontaneous abortion ($t = -3.035$, $P = 0.003$) and preterm birth ($t = -2.209$, $P = 0.029$). PFOA associated with 15.99 days reduction in gestational age; 267.3 g reduction in birth weight; 1.91 cm reduction in birth length; 1.37 lg-unit reduction in Apgar score. The same study population as (7).
Li Y et al. <i>(9)</i>	Guiyu, China	Ecological: exposed town vs control town	Newborn infants. Exposed 2006 (<i>n</i> =100); 2007 (<i>n</i> =100). Control 2006 (<i>n</i> =52); 2007 (<i>n</i> =50)	Chromium	Cord blood chromium 2006: 303.38 vs 19.95 mg/L; 2007: 99.9 vs 32.48 mg/L. No association with birth weight or birth length. Evidence suggests that chromium may cause DNA damage in neonates.
Xu X et al. <i>(10)</i>	Guiyu, China	Informal recycling	Newborn infants. Exposed (n=432), control (n=99)	Lead	Cord blood lead: 10.87 vs 2.25 mg/dL ($P < 0.01$), correlated with recycling activity. Higher rates of adverse birth outcomes: stillbirth (4.72 vs 1.03%); preterm birth (5.68 vs 5.24%); lower birth weight (3168 vs 3258 g); and lower Apgar scores (9.6 vs 9.9, all $P < 0.01$) linked to prenatal lead exposure.

Table 2. Adverse neonatal outcomes continued

Author	Exposure location	Exposure setting	Exposed population	Primary toxicant	Health outcome
Xu L et al. <i>(11)</i>	Guiyu, China	Exposed town vs control town	Pregnant women and newborn infants. Exposed pregnant women (<i>n</i> =99), control (<i>n</i> =86)	Lead, cadmium	Cord blood lead: 498.80 vs 27.01; cadmium: 96.19 vs 12.65 ng/g. Cadmium correlated with 205.05 g reduction in neonatal weight and 0.44 cm reduction in body length. No statistical significance found with lead.
Xu L et al. <i>(12)</i>	Guiyu, China	Exposed town vs control town. Some participants employed in e-waste recycling	Pregnant women and newborn infants. Exposed pregnant women (<i>n</i> =69), control (<i>n</i> =86)	PBDEs	Cord blood PBDEs: 32.25 vs 5.13 ng/g. PBDE concentration negatively correlated with head circumference (33.52 vs 34.92 cm, $P < 0.05$) and neonatal BMI (11.90 vs 12.69 kg/m ² , $P < 0.05$), and strongly negatively correlated with Apgar1 score (9.16 vs 10.0, $P < 0.001$).
Zhang Y et al. <i>(13)</i>	Guiyu, China	Exposed town vs control town. One participant did work related to e-waste during pregnancy	Pregnant women and newborn infants. Exposed pregnant women (<i>n</i> =237), control (<i>n</i> =212)	Cadmium	Maternal urinary cadmium with female neonates: 1.59 vs 0.92; with male neonates: 1.38 vs 0.74 µg/g creatinine ($P = 0.00$). Maternal urinary cadmium level with female neonates significantly inversely associated with birth weight, length, head circumference, and Apgar 1 and 5 scores (all $P < 0.05$), and significant association with Apgar 1 score in male neonates ($P = 0.004$).
Huo X et al. <i>(14)</i>	Guiyu, China	Exposed town vs control town	Pregnant women. Exposed (<i>n</i> =155), control (<i>n</i> =102)	OH-PAHs	Maternal urine OH-PAH: 6.87 vs 3.90 μ g/g creatinine ($P < 0.001$). PAHs linked to decrease of 234.56 g in weight, 1.72 cm in head circumference, 1.06 kg/m ² in BMI and 0.42 in Apgar 1 score (all $P < 0.05$).
Li M et al. <i>(15)</i>	Guiyu, China	Exposed town vs control town	Pregnant women. Exposed (<i>n</i> =150), control (<i>n</i> =150)	PBDEs	Cord blood PBDEs: 71.92 vs 15.52 ng/g lipid weight ($P < 0.01$). Neonatal head circumference, BMI and Apgar 1 score negatively correlated with PBDEs (all $P < 0.01$).

BaA: benzo[a]anthracene; BaP: benzo[a]pyrene; BMI: body mass index; DahA: dibenz[a,h]anthracene; OH-PAH: hydroxylated polycyclic aromatic hydrocarbon; PAH: polycyclic aromatic hydrocarbon; PBDE: polybrominated diphenyl ether; PCB: polychlorinated biphenyl; PFOA: perfluorooctanoic acid.

Table 3. Short placental telomere

Author	Exposure location	Exposure setting	Exposed population	Primary toxicant	Health outcome
Lin S et al. <i>(16)</i>	Guiyu, China	Exposed town vs control town	Newborn infants. Exposed (n=220), control (n=93)	Cadmium, lead	Cord blood cadmium: 0.0929 vs 0.0239 μ g/g ($P < 0.01$); lead 1.2491 vs 1.3525 μ g/g ($P > 0.05$). Cord blood cadmium negatively correlated with placental telomere length ($r = -0.138$, $P = 0.013$), no significant correlation between cord blood lead and telomere length.

预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_23805

