WHO global air quality guidelines

Particulate matter (PM_{2.5} and PM₁₀), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide

Executive summary

WHO global air quality guidelines

Particulate matter ($PM_{2.5}$ and PM_{10}), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide

Executive summary

WHO global air quality guidelines: particulate matter (PM_{2.5} and PM₁₀), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Executive summary

ISBN 978-92-4-003443-3 (electronic version)

ISBN 978-92-4-003442-6 (print version)

© World Health Organization 2021

Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CCBY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: "This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition".

Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization . (http://www.wipo.int/amc/en/mediation/rules/)

Suggested citation. WHO global air quality guidelines. Particulate matter ($PM_{2.5}$ and PM_{10} , ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Executive summary. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO.

Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris.

Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing.

Third-party materials. If you wish to reuse material from this work that is attributed to a third party, such as tables, figures or images, it is your responsibility to determine whether permission is needed for that reuse and to obtain permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user.

General disclaimers. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of WHO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by WHO in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall WHO be liable for damages arising from its use.

Cover image: Pellegrini

Executive summary

The global burden of disease associated with air pollution exposure exacts a massive toll on human health worldwide: exposure to air pollution is estimated to cause millions of deaths and lost years of healthy life annually. The burden of disease attributable to air pollution is now estimated to be on a par with other major global health risks such as unhealthy diet and tobacco smoking, and air pollution is now recognized as the single biggest environmental threat to human health.

Despite some notable improvements in air quality, the global toll in deaths and lost years of healthy life has barely declined since the 1990s. While air quality has markedly improved in high-income countries over this period, it has generally deteriorated in most low- and middle-income countries, in step with large-scale urbanization and economic development. In addition, the global prevalence of noncommunicable diseases (NCDs) as a result of population ageing and lifestyle changes has grown rapidly, and NCDs are now the leading causes of death and disability worldwide. NCDs comprise a broad range of diseases affecting the cardiovascular, neurological, respiratory and other organ systems. Air pollution increases morbidity and mortality from cardiovascular and respiratory disease and from lung cancer, with increasing evidence of effects on other organ systems. The burden of disease resulting from air pollution also imposes a significant economic burden. As a result, governments worldwide are seeking to improve air quality and reduce the public health burden and costs associated with air pollution.

Since 1987, WHO has periodically issued health-based air quality guidelines to assist governments and civil society to reduce human exposure to air pollution and its adverse effects. The WHO air quality guidelines were last published in 2006. Air quality guidelines – global update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide (WHO Regional Office for Europe, 2006) provided health-based guideline levels for the major health-damaging air pollutants, including particulate matter (PM)¹, ozone (O₃), nitrogen dioxide (NO₂) and sulfur dioxide (SO₂). Global update 2005² has had a significant impact on pollution abatement policies all over the world. Their publication led to the first universal frame of reference.

EXECUTIVE SUMMARY 1

 $^{^{1}}$ That is, PM_{2.5} (particles with an aerodynamic diameter of ≤ 2.5 μm) and PM₁₀ (particles with an aerodynamic diameter of ≤ 10 μm).

² Air quality guidelines – global update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide (WHO Regional Office for Europe, 2006).

In various ways, these guidelines have stimulated authorities and civil society alike to increase efforts to control and study harmful air pollution exposures. In response to this growing awareness, the Sixty-eighth World Health Assembly adopted resolution WHA68.8, Health and the environment: addressing the health impact of air pollution, which was endorsed by 194 Member States in 2015 (WHO, 2015). This resolution stated the need to redouble efforts to protect populations from the health risks posed by air pollution. In addition, the United Nations (UN) Sustainable Development Goals (SDGs) were designed to address the public health threat posed by air pollution via specific targets to reduce air pollution exposure and the disease burden from household and ambient exposure.

More than 15 years have passed since the publication of *Global update 2005*. In that time there has been a marked increase in evidence on the adverse health effects of air pollution, built on advances in air pollution measurement and exposure assessment and an expanded global database of air pollution measurements (discussed in Chapter 1). New epidemiological studies have documented the adverse health effects of exposure to high levels of air pollution in low- and middle-income countries, and studies in high-income countries with relatively clean air have reported adverse effects at much lower levels than had previously been studied.

In view of the many scientific advances and the global role played by the WHO air quality guidelines, this update was begun in 2016.

Objectives

The overall objective of the updated global guidelines is to offer quantitative health-based recommendations for air quality management, expressed as longor short-term concentrations for a number of key air pollutants. Exceedance of the air quality guideline (AQG) levels is associated with important risks to public health. These guidelines are not legally binding standards; however, they do provide WHO Member States with an evidence-informed tool that they can use to inform legislation and policy. Ultimately, the goal of these guidelines is to provide guidance to help reduce levels of air pollutants in order to decrease the enormous health burden resulting from exposure to air pollution worldwide.

Specific objectives are the following.

 Provide evidence-informed recommendations in the form of AQG levels, including an indication of the shape of the concentration-response function in relation to critical health outcomes, for PM_{2.5}, PM₁₀, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide for relevant averaging times. These pollutants were chosen because of their worldwide importance. However, this choice does not imply that other air pollutants are irrelevant.

- Provide interim targets to guide reduction efforts towards the ultimate and timely achievement of the AQG levels for countries that substantially exceed these levels.
- Provide qualitative statements on good practices for the management of certain types of PM (i.e. black carbon or elemental carbon (BC/EC)³, ultrafine particles (UFP)⁴, and particles originating from sand and dust storms (SDS)) for which the available information is insufficient to derive AQG levels but indicates risk.

Methods used to develop the guidelines

The guidelines were formulated by following a rigorous process involving several groups with defined roles and responsibilities (Chapter 2). In particular, the different steps in the development of the AQG levels included:

- a determination of the scope of the guidelines and formulation of systematic review questions;
- a systematic review of the evidence and meta-analyses of quantitative effect estimates to inform updating of the AQG levels;
- an assessment of the level of certainty of the bodies of evidence resulting from systematic reviews for the pollutants; and
- the identification of AQG levels, that is, the lowest levels of exposure for which there is evidence of adverse health effects.

In addition, the 2005 air quality interim targets were updated to guide the implementation of the new AQG levels, and good practice statements were formulated to support the management of the specific types of PM of concern. Interim targets are air pollutant levels that are higher than the AQG levels, but which authorities in highly polluted areas can use to develop pollution reduction policies that are achievable within realistic time frames. Therefore, the interim targets should be regarded as steps towards the ultimate achievement of AQG levels in the future, rather than as end targets. The number and numerical values of the interim targets are pollutant specific, and are justified in the relevant sections of Chapter 3.

EXECUTIVE SUMMARY 3

³ An indicator of airborne soot-like carbon.

 $^{^4}$ That is, particles with an aerodynamic diameter of of ≤ 0.1 μm.

The process and methods for developing these guidelines are described in detail in Chapter 2.

The systematic reviews that informed the formulation of AQG levels and other related evidence discussed during the process are available in a special issue of Environment International, entitled *Update of the WHO global air quality guidelines: systematic reviews* (Whaley et al., 2021).

Recommendations on classical air pollutants

In this guideline update, recommendations on AQG levels are formulated, together with interim targets, for the following pollutants: $PM_{2.5}$, PM_{10} , ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide (Table 0.1). The evidence-informed derivation of each AQG level and an indication of the reduction in health risk associated with the achievement of consecutive interim targets can be found in Chapter 3.

Table 0.1. Recommended AQG levels and interim targets

Pollutant	Averaging time	Interim target				AQG level
		1	2	3	4	•
PM _{2.5} , μg/m³	Annual	35	25	15	10	5
	24-hour ^a	75	50	37.5	25	15
PM ₁₀ , μg/m³	Annual	70	50	30	20	15
	24-hour ^a	150	100	75	50	45
O ₃ , μg/m³	Peak season ^b	100	70	-	-	60
	8-hour ^a	160	120	_	-	100

预览已结束,完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_23593

