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b) Binary dependent variable models in cross-section 

• Binary outcome 

• Latent variable 

• Linear probability model (LMP) 

• Probit model 

• Logit model 

• Marginal effects 

• Odds ratio in logit model 

• Maximum likelihood (ML) estimation 

• Rules of thumb 
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Binary outcome 

 

• In many applications the dependent variable is not continuous but 
qualitative, discrete or mixed: 

• Qualitative: car ownership (Y/N) 

• Discrete: education degree (Ph.D., University degree,…, no education) 

• Mixed: hours worked per day 

  

• Here we focus on the case of a binary dependent variable 

• Example with firm-level data: exporter status (Y/N) 
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Binary outcome (ct’d) 

 

• Let 𝑦 be a binary dependent variable: 

 

𝑦 =  
1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝
0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝

 

  

• A regression model is formed by parametrizing the probability 𝑝 to 
depend on a vector of explanatory variables 𝒙 and a 𝐾 × 1 parameter 
vector 𝛽 

• Commonly, we estimate a conditional probability: 

 

𝑝𝑖 = Pr 𝑦𝑖 = 1 𝒙 = 𝐹(𝒙𝑖′𝛽)      (1) 

 

 where 𝐹(∙) is a specified function 
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Intuition for 𝐹(∙): latent variable 

 

• Imagine we wanted to estimate the effect of 𝒙 on a continuous variable 𝑦∗ 

• The “index function” model we would like to estimate is: 

 
𝑦𝑖
∗ = 𝒙𝑖′𝛽 − 𝜀𝑖 

 

• However, we do not observe 𝑦∗ but only the binary variable 𝑦 

 

𝑦 =  
1 𝑖𝑓 𝑦∗ > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Intuition for 𝐹(∙): latent variable (ct’d) 

 

• There are two ways of interpreting 𝑦𝑖
∗: 

 

1. Utility interpretation: 𝑦𝑖
∗ is the additional utility that individual 𝑖 would 

get by choosing 𝑦𝑖 = 1 rather than 𝑦𝑖 = 0 

 

2. Threshold interpretation: 𝜀𝑖 is a threshold such that if 𝒙𝑖′𝛽 > 𝜀𝑖, then 
𝑦𝑖 = 1 

 

• The parametrization of 𝑝𝑖 is: 

 
𝑝𝑖 = Pr 𝑦 = 1 𝒙 = Pr 𝑦∗ > 0 𝑥 = Pr [ 𝒙′𝛽 − 𝜀 > 0 𝑥  

                                  = Pr 𝜀 < 𝒙′𝛽 = 𝐹[𝒙′𝛽] 

 
where 𝐹(∙) is the CDF of 𝜀 
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Linear probability model (LMP) 

 

• The LPM does not use a CDF, but rather a linear function for 𝐹(∙) 

• Therefore, equation (1) becomes: 

 
𝑝𝑖 = Pr 𝑦𝑖 = 1 𝒙 = 𝒙𝑖′𝛽 

 

• The model is estimated by OLS with error term 𝜀𝑖 

• From basic probability theory, it should be the case that 0 ≤ 𝑝𝑖 ≤ 1 

• This is not necessarily the case in the LPM, because 𝐹(∙)  in not a CDF 
(which is bounded between 0 and 1) 

• Therefore, one could estimate predicted probabilities 𝑝 𝑖 = 𝒙𝑖′𝛽   that are 
negative or exceed 1 

• Moreover, 𝑉 𝜀𝑖 = 𝒙𝑖′𝛽(1 − 𝒙𝑖′𝛽) depends on 𝒙𝑖 

• Therefore, there is heteroskedasticity (standard errors need to be robust) 

• However, LPM provides a good guide to which variables are statistically 
significant 
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