Modern trade theory for CGE modellers: the Armington, Krugman and Melitz models

by

Peter B. Dixon, Michael Jerie and Maureen T. Rimmer

presentation by Peter B. Dixon Maca0, China

December 11, 2013

Trade in CGE modelling

Pre 1970s Heckscher-Ohlin - imports and domestic products identical, constant returns to scale, perfect competition

→ big gains from trade but unrealistic specialization

1970s- Armington - import/domestic imperfect substitution (variety at country level), constant returns to scale, perfect competition

→ big negative terms-of-trade effects from cutting tariffs even for small countries, often dominate positive efficiency gain

1980s- Krugman - variety at firm level rather than country level, increasing returns to scale, monopolistic competition among identical firms \rightarrow still get big negative terms-of-trade effects but potential extra welfare from additional variety and increasing returns to scale

2003- Melitz - variety at firm level, increasing returns to scale, monopolistic competition among firms with different productivity

→ still get big negative terms-of-trade effects but potential extra welfare from additional variety, increasing returns to scale, and pro-trade productivity effect

Introduction

- Derive the Armington, Krugman and Melitz models of trade as special cases of a general model.
- Examine optimality properties of Melitz
- Look at the Balistreri-Rutherford decomposition algorithm: solves Melitz general equilibrium by iterating between Melitz sectoral models and an Armington general equilibrium model
- Set up numerical Melitz model
- Demonstrate that Melitz welfare results can be decomposed into Armington effects
- Show that Melitz results look like Armington results with a higher substitution elasticity

Country j's demand for varieties of widgets from all countries

People in country j choose Q_{si} and Q_{ksi} to minimize:

$$\sum\nolimits_{s}\sum\limits_{k\in S(s,j)} {{{\bf Q}_{ksj}}}{{\bf P}_{ksj}}$$

subject to

$$\mathbf{Q}_{sj} = \left(\sum_{\mathbf{k} \in \mathbf{S}(s,j)} \gamma_{\mathbf{k}sj} \mathbf{Q}_{\mathbf{k}sj}^{-\rho}\right)^{-1/\rho} \tag{4}$$

and

$$\mathbf{Q}_{\mathbf{j}} = \left(\sum_{\mathbf{s}} \delta_{\mathbf{s}\mathbf{j}} \mathbf{Q}_{\mathbf{s}\mathbf{j}}^{-\rho}\right)^{-1/\rho}$$

Encompassing model: demand functions

$$\mathbf{Q}_{ksj} = \mathbf{Q}_{j} \left(\delta_{sj} \gamma_{ksj} \right)^{\sigma} \left(\frac{\mathbf{P}_{j}}{\mathbf{P}_{ksj}} \right)^{\sigma} \text{ and}$$
 (3)

$$\mathbf{P}_{\mathbf{j}} = \left(\sum_{\mathbf{s}} \sum_{\mathbf{k} \in \mathbf{S}(\mathbf{s}, \mathbf{j})} \left(\delta_{\mathbf{s}\mathbf{j}} \gamma_{\mathbf{k}\mathbf{s}\mathbf{j}}\right)^{\sigma} \mathbf{P}_{\mathbf{k}\mathbf{s}\mathbf{j}}^{1-\sigma}\right)^{\frac{1}{(1-\sigma)}}$$
(2)

Encompassing model: profits

Contribution to profits of firm k,s from sales to j

$$\Pi_{ksj} = \mathbf{P}_{ksj} \mathbf{Q}_{ksj} - \left(\frac{\mathbf{W}_{s} T_{sj}}{\Phi_{ks}}\right) \mathbf{Q}_{ksj} - \mathbf{F}_{sj} \mathbf{W}_{s}$$
 (5)

Industry profits in country s

$$\Pi_{s} = \sum_{i} \sum_{k \in S(s,i)} \Pi_{ksj} - N_{s}H_{s}W_{s}$$
(6)

Encompassing model: prices

$$\mathbf{P}_{\mathbf{k}\mathbf{s}\mathbf{j}} = \left(\frac{\mathbf{W}_{\mathbf{s}}\mathbf{T}_{\mathbf{s}\mathbf{j}}}{\Phi_{\mathbf{k}\mathbf{s}}}\right) \left(\frac{\mathbf{\eta}}{1+\mathbf{\eta}}\right) , \quad \mathbf{\eta} < -1$$
 (1)

Lerner mark-up rule: η is the perceived elasticity of demand

https://www.yunbaogao.cn/report/index/report?reportId=5_5893

mpassing model: widget ployment in country s

$$\frac{sj}{sj} + \sum_{j} N_{sj} F_{sj} + N_{s} H_{s}$$

