Mobile network big data for Disaster Risk Reduction

Rohan Samarajiva

UN ESCAP Workshop on knowledge and policy gaps in disaster risk reduction and development planning

Bangkok, Thailand

8-9 March 2016

This work was carried out with the aid of a grant from the International Development Research Centre, Canada.

Mobile networks can contribute in different ways

- Immense potential for early warning because of ubiquity of always-on devices carried on the person
 - E.g., cell broadcasting which, if based on Common Alerting Protocol, can communicate geographically targeted messages and is immune to congestion
- But focus of this presentation is on big data generated as a by-product of the operation of mobile services
 - Our focus is on Mobile Network Big Data (MNBD) because it represents all phones, smart and otherwise

Mobile Network Big Data is most representative at this time

	Mobile SIMs/100	Internet users/100	Facebook users/100
Myanmar	50	2	12
Bangladesh	76	10	9
Pakistan	73	14	11
India	73	18	9
Sri Lanka	107	26	16
Philippines	112	40	41
Indonesia	125	17	25
Thailand	143	35	49

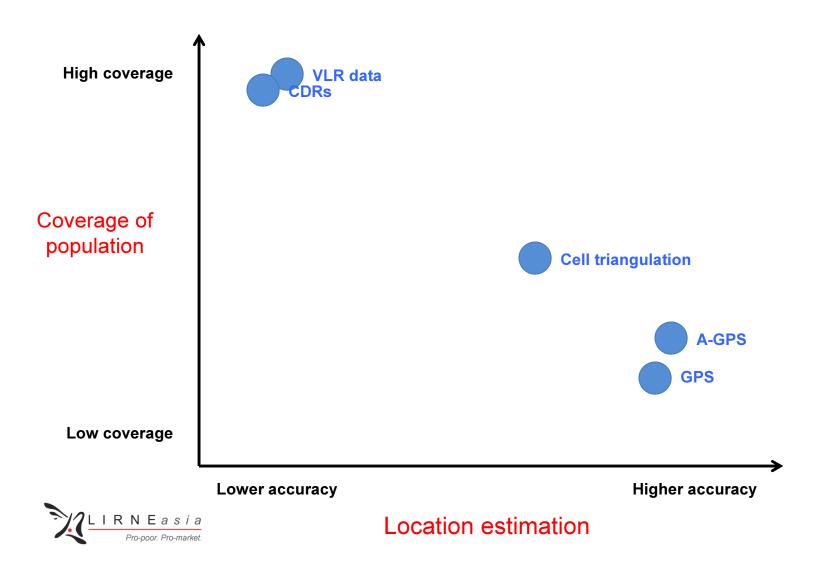
Source: ITU Measuring Information Society 2014; Facebook advertising portal

Visitor Location Registry (VLR) & Call Detail Records (CDR) data

- VLR data are generated with no human intervention: every mobile device periodically signals its presence to the nearest base station
 - Massive volumes; not routinely stored
- Call Detail Records (CDRs) are meta data recording actions by customers needed for billing purposes, not content of communications
 - Records of calls
 - SMS
 - Internet access
 - Airtime recharge records
- Both VLR and CDR data provide data not only on "who called whom" type actions, but also of movement through time and space
- Data sets need not include any Personally Identifiable Information
 - LIRNEasia has obtained historical, pseudonymized MNBD from multiple mobile operators in Sri Lanka

What MNBD can do for DRR, response and relief

- It can produce high-frequency and granular reports on how people move around
 - Useful for informed urban planning, which would ideally have DRR built in
 - Special insights relevant to spread of infectious diseases
 - Normal movement patterns can be baseline for evacuation planning
 - Abnormal patterns can yield insights
 - Also useful for reconstruction planning
- Can locate congregations quickly after a disaster so relief can be supplied
- Reload data in aggregate can also yield relief & recovery related insights



How can the location of a mobile subscriber be determined

- GPS
- Assisted GPS (A-GPS)
 - GPS + triangulation using cell towers
- Pure cell triangulation
 - Time of Arrival (ToA)
 - Angle of Arrival (AoA)
- Passive location data (i.e. Cell antenna coordinates)
 - VLR
 - CDRs, etc.

Most handsets are not GPS enabled in developing economies

Other limitations

is triangulation of every phone in a
in not always feasible
is storage of VLR data is costly since
nes are huge

's event based → there are gaps ng to understand individual mobility

