

Agriculture Investing in natural capital

Acknowledgements

Chapter Coordinating Author: **Dr. Hans R. Herren**, President, Millennium Institute, Arlington, VA, USA.

Asad Naqvi and Nicolas Bertrand (in the initial stages of the project) of UNEP managed the chapter, including the handling of peer reviews, interacting with the coordinating author on revisions, conducting supplementary research and bringing the chapter to final production. Derek Eaton reviewed and edited the modelling section of the chapter. Sheng Fulai conducted preliminary editing of the chapter.

The following individuals contributed to different sections of the chapter through research and writing: Sithara Atapattu (formerly with International Water Management Institute and now Deputy Team Leader on the Asian Development Bank project Strengthening Capacity for Climate Change Adaptation in Sri Lanka), Andrea Bassi (Millennium Institute), Patrick Binns (Millennium Institute), Lim Li Ching (Third World Network), Maria Fernandez (formerly with Center for Tropical Agriculture (CIAT) and now with Rural Innovation, Gender and Participation, Lima, Peru), Shahrukh Rafi Khan (Professor of Economics, Mount Holyoke College), Dekshika Charmini Kodituwakku (Consultant on Forestry and Environmental Management, Mandurah, Australia), Rattan Lal (Carbon Sequestration Management Center, Ohio State University), Adil Najam (Director, Pardee Center for the Study of the Longer-Range Future, Boston University), Asad Naqvi (UNEP), Peter Neuenschwander (International Institute of Tropical Agriculture), Jyotsna Puri (UNEP), Manuele Tamo (International Institute of Tropical Agriculture), and Sébastien

Treyer (International Institute for Sustainable Development and International Relations).

Richard Piechocki (Rabobank Nederland), Lara Yacob (Robeco), and Daniel Wild (Sustainable Asset Management AG) provided information for some case studies and success stories. Annie Haakenstad, Waqas Rana, Zainab Soomar, Pratyancha Pardeshi and Marco Portugal provided valuable help in collecting data and evidence. Ivo Mulder (UNEP) facilitated the coordination with investment institutions.

We would like to thank the many colleagues and individuals who commented on various drafts and provided suggestions including Ana Lucía Iturriza (ILO), Charles Arden-Clarke (UNEP), Arab Hoballah (UNEP), Peter Gilruth (UNEP), Tessa Goverse (UNEP), Ann Herbert (ILO), Ulrich Hoffmann (UNCTAD), Anne-Marie Izac (CGIAR), Elwyn Grainger-Jones (IFAD), Harald Kaechele (Leibniz-Centre for Agricultural Landscape Research, ZALF), Alexander Kasterine (ITC), Rashid Kaukab (CUTS - Geneva), Kristen Kurczak (UNEP), James Lomax (UNEP), Robert McGowan (Independent Expert), Christian Nellemann (UNEP/GRID-Arendal), Rajendra Paratian (ILO), Michaela Pfeiffer (WHO), Philip Riddell (Independent Expert), Gunnar Rundgren (Independent Expert), Nadia El-Hage Scialabba (FAO), John D. Shilling (MI), Roland Sundström (IFAD), Naoufel Telahigue (IFAD), Sophia Twarog (UNCTAD), Justin Perrettson (Novozymes), Katja Bechtel (CropLife International), Dr. Babatunde Osotimehin (UNFPA), Mayumi Sakoh (World Society for the Protection of Animals), Morgane Danielou (International Fertiliser Industry Association) and Ylva Stiller (Syngenta).

Copyright © United Nations Environment Programme, 2011 $\mathsf{Version}-02.11.2011$

Contents

List of acronyms				
1.1	General background			
1.2	Conventional/industrial agriculture			
1.3	Traditional/small farm/subsistence agriculture41			
1.4	The greening of agriculture			
2	Challenges and opportunities			
2.1	Challenges			
2.2	Opportunities			
3	The case for greening agriculture			
3.1	The cost of environmental degradation resulting from agriculture			
3.2	Investment priorities for greening agriculture51			
3.3	The benefits of greening agriculture57			
3.4	Modelling: Future scenarios for green agriculture			
4	Getting there: Enabling conditions			
4.1	Global policies			
4.2	National policies			
4.3	Economic instruments			
4.4	Capacity building and awareness-raising			
5	Conclusions			
Refe	rences			

List of figures

Figure 1: Total average contribution to poverty reduction from growth of agricultural, remittance and
non-farm incomes in selected countries
Figure 2: Contribution of agriculture to GDP and public expenditure on agriculture as a proportion of
agricultural GDP
Figure 3: Global trends in cereal and meat production, nitrogen and phosphorus fertiliser use, irrigation
and pesticide production
Figure 4: Regional distribution of small farms
Figure 5: Distribution of population by age in more developed and less developed regions: 1950-230044
Figure 6: Urban and rural population trends in developing regions
Figure 7: Trends in food commodity prices, compared with trends in crude oil prices
Figure 8: Percentage of country populations that will be water stressed in the future
Figure 9a-b: The makeup of total food waste47
Figure 10: Expected future food insecurity48
Figure 11: Share of overseas development assistance for agriculture (1979–2007)48
Figure 12: Global trade in organic food and drinks (1999-2007)49
Figure 13: Estimated producer support by country (as a percentage of total farmer income)

List of tables

Table 1: Potential indicators for measuring progress towards green agriculture	43
Table 2: Selected evidence on benefits and costs of plant and animal health management	52
Table 3: Selected evidence on benefits and costs of soil management strategies	55
Table 4: Selected evidence on benefits and costs of water management strategies	56
Table 5: Selected evidence on benefits and costs of agricultural diversification	58
Table 6: Incremental annual agricultural investment figures by region needed to counteract climate-	
change impacts on child malnutrition	60
Table 7: Results from the simulation model	62

List of boxes

Box 1: Agriculture at a crossroads	41
Box 2: Opportunities for improved sanitation systems and organic nutrient recycling	
Box 3: Innovations in the agricultural supply chain increase shareholder and societal value	
Box 4: Cost of training smallholder farmers in green agriculture practices	52
Box 5: Simple storage: low investment, high returns	
Box 6: Investment in sustainable agriculture: case study	57
Box 7: Innovative sustainable and social capital investment initiatives	59
Box 8: Organic versus conventional cotton production	59

List of acronyms

ADB	Asian Development Bank	IMF	International Monetary Fund
AKST	Agricultural knowledge, science and	IP	Intellectual Property
	technology	IPCC	Intergovernmental Panel on Climate
BAU	Business-as-usual		Change
BCI	Better Cotton Initiative	IPM	Integrated Pest Management
BSI	Better Sugar Initiative	ITC	International Trade Centre
CAADP	Comprehensive Africa Agriculture	LICs	Low Income Countries
	Development Programme	LMICs	Lower Middle Income Countries
CGIAR	Consultative Group on International	MDG	Millennium Development Goal
	Agricultural Research	MSCI	Morgan Stanley Capital International
CSIRO	The Commonwealth Scientific and Industrial Research Organisation	NCAR	National Centre for Atmospheric Research
DEFRA	Department for Environment, Food	NGO	Non-governmental organisation
	and Rural Affairs (UK)	ODA	Oversees Development Assistance
EU	European Union	OECD	Organisation for Economic Co-operation
FAO	Food and Agriculture Organisation of		and Development
	the United Nations	PAHM	Plant and animal health management
FAOSTAT	Food and Agriculture Organisation Statistical Databases	PES	Payment for Ecosystem Services
F;DI		PICS	Purdue Improved Cowpea Storage
FiBL	German Research Institute of Organic Agriculture	R&D	Research and development
G8	Group of Eight	ROI	Return on investment
GAP	Good Agricultural Practices	RSPO	Roundtable on Sustainable Palm Oil
GDP	Gross Domestic Product	RTRS	Round Table on Responsible Soy
GHG	Greenhouse gas	SAM	Sustainable Asset Management AG
GMO	Genetically modified organism	SOM	Soil organic matter
GRID	Global Resource Information Database	SRI	System Rice Intensive
HICs	High Income Countries	SWFs	Sovereign wealth funds
IAASTD	International Assessment of	UMICs	Upper Middle Income Countries
	Agricultural Knowledge, Science and Technology for Development	UNCTAD	United Nations Conference on Trade and Development
ICARDA	International Centre for Agricultural Research in the Dry Areas	UN DESA	United Nations Department of Economic and Social Affairs
IDH	Dutch Sustainable Trade Initiative	UNDP	United Nations Development
IEA	International Energy Agency		Programme
IFAD	International Fund for Agricultural	UNEP	United Nations Environment Programme
	Development	UNESC ECA	United Nations Economic and Social Council, Economic Commission for Africa
IFOAM	International Federation of Organic	WDR	World Development Report
IFPRI	Agriculture Movements International Food Policy Research	WIPO	World Intellectual Property Organisation
	Institute	WTO	World Trade Organisation
ILO	International Labour Organisation	WWAP	World Water Assessment Programme

Key messages

1. Feeding an expanding and more demanding world population in the first half of this century, while attending to the needs of nearly one billion people who are presently undernourished and addressing climate change, will need managed transitions away from "business-as-usual" (BAU) in both conventional¹ and traditional² farming. In different ways and in varying degrees, current farming systems deplete natural capital and produce significant quantities of global greenhouse gases (GHG) and other pollutants, which disproportionately affect the poor. The continued demand for land-use changes is often responsible for deforestation and loss of biodiversity. The economic cost of agricultural externalities amounts to billions of US dollars per year and is still increasing. A package of investments and policy reforms aimed at greening agriculture³ will offer opportunities to diversify economies, reduce poverty through increased yields and creation of new and more productive green jobs – especially in rural areas, ensure food security on a sustainable basis, and significantly reduce the environmental and economic costs associated with today's industrial farming practices.

2. Green agriculture is capable of nourishing a growing and more demanding world population at higher nutritional levels up to 2050. It is estimated that an increase, from today's 2,800 Kcal availability per person per day to around 3,200 Kcal by 2050, is possible with the use of green agricultural practices and technologies. It is possible to gain significant nutritional improvements from increased quantity and diversity of food (especially non-cereal) products. During the transition to a greener agriculture, food production in high-input industrial farming may experience a modest decline, while triggering significant positive responses in more traditional systems run by small farmers in the developing world, and producing the majority of stable crops needed to feed the world population. Public, private and civil initiatives for food production and social equity will be needed for an efficient transition at farm level and to assure sufficient quality nutrition for all during this period.

3. Green agriculture will reduce poverty. Environmental degradation and poverty can be simultaneously addressed by applying green agricultural practices. There are approximately 2.6 billion people who depend on agriculture for livelihood, a vast majority of them living on small farms and in rural areas on less than US\$1 per day. Increasing farm yields and return on labour, while improving ecosystem services (on which the poor depend most directly for food and livelihoods) will be key to achieving these goals. For example, estimates suggest that for every 10 per cent increase in farm yields, there has been a 7 per cent reduction in poverty in Africa, and more than 5 per cent in Asia. Evidence shows that the application of green farming practices has increased yields, especially on small farms, between 54 and 179 per cent.

4. Reducing waste and inefficiency is an important part of the green agriculture paradigm. Crop losses due to pests and hazards, combined with food waste in storage, distribution, marketing and at the household level, account for nearly 50 per cent of the human edible calories that are produced. Currently, total production is around 4,600 Kcal/person/day, but what is available for human consumption is around 2,000 Kcal/person/day. The Food and Agriculture Organisation (FAO) suggests that a 50 percent reduction of losses and wastage in the production and consumption chain is a

- 3. Refer to section 1.4 for detailed information about a green agriculture paradigm.
- 4. For details, refer to the Modelling Chapter of this report.

^{1.} Refer to section 1.2 for more details about what this report categorises as conventional or industrial agriculture.

^{2.} Refer to section 1.3 for detailed information about what this report considers traditional, smallholder and subsistence farming.

necessary and achievable goal. Addressing some of these inefficiencies – especially crop and storage losses – offers opportunities that require small investments in simple farm and storage technology on small farms, where it makes the most material difference to smallholder farmers. The FAO reports that although reducing post-harvest losses could be achieved relatively quickly, less than five percent of worldwide agricultural research and extension funding currently targets this problem.

5. Greening agriculture requires investment, research and capacity building. This is needed in the following key areas: soil fertility management, more efficient and sustainable water use, crop and livestock diversification, biological plant and animal health management, an appropriate level of mechanisation, improving storage facilities especially for small farms and building upstream and downstream supply chains for businesses and trade. Capacity building efforts include expanding green agricultural extension services and facilitating improved market access for smallholder farmers and cooperatives. The aggregate global cost of investments and policy interventions required for the transition towards green agriculture is estimated to be US\$ 198 billion per year from 2011 to 2050.⁴ The value added in agricultural production increases by 9 per cent, compared with the projected BAU scenario. Studies suggest that "Return on investments (ROI) in agricultural knowledge, science and technology across commodities, countries and regions on average are high (40-50 per cent) and have not declined over time. They are higher than the rate at which most governments can borrow money". In terms of social gains, the Asian Development Bank Institute concluded that investment needed to move a household out of poverty, in parts of Asia, through engaging farmers in organic agriculture, could be as little as US\$ 32 to US\$ 38 per capita.

6. Green agriculture has the potential to be a net creator of jobs that provides higher return on *labour inputs than conventional agriculture*. Additionally, facilities for ensuring food safety and higher quality of food processing in rural areas are projected to create new better quality jobs in the food production chain. Modelled scenarios suggest that investments aimed at greening agriculture could create 47 million additional jobs in the next 40 years, compared with the BAU scenario.

7. A transition to green agriculture has significant environmental benefits. Green agriculture has the potential to: rebuild natural capital by restoring and maintaining soil fertility; reduce soil erosion and inorganic agro-chemical pollution; increase water-use efficiency; decrease deforestation, biodiversity loss and other land use impacts: and significantly reduce agricultural GHG emissions

预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_16341