

THE INTEGRATED GREEN ECONOMY MODELLING FRAMEWORK

TECHNICAL DOCUMENT

Copyright © United Nations Environment Programme, 2017, on behalf of PAGE

The report is published as part of the Partnership for Action on Green Economy (PAGE) – an initiative by the United Nations Environment Programme (UN Environment), the International Labour Organization (ILO), the United Nations Development Programme (UNDP), the United Nations Industrial Development Organization (UNIDO) and the United Nations Institute for Training and Research (UNITAR).

This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. The PAGE Secretariat would appreciate receiving a copy of any publication that uses this publication as a source.

No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the PAGE Secretariat.

Disclaimer

This publication has been produced with the support of PAGE funding partners. The contents of this publication are the sole responsibility of PAGE and can in no way be taken to reflect the views of any Government. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the PAGE partners concerning the legal of any country, territory, city or area or of its authorities, or concerning delimitation of its frontiers or boundaries. Moreover, the views expressed do not necessarily represent the decision or the stated policy of the PAGE partners, nor does citing of trade names or commercial processes constitute endorsement.

Citation

PAGE (2017), The Integrated Green Economy Modelling Framework – Technical Document.

Cover Photo

A farmer from Kipilat village planting a tree in Anabkoi. © UN Environment/Riccardo Gangale/2012

Acknowledgements

The report and methodology presented here were developed by José Pineda and Gisèle Mueller under the guidance of Sheng Fulai of UN Environment's Economics and Resources and Markets Branch.

The Integrated Green Economy Framework was conceptualized and developed by José Pineda, Gisèle Mueller and Ronal Gainza under the guidance of Sheng Fulai of UN Environment's Resources and Markets Branch. Substantive technical contribution for the methodological framework and simulation of results was provided by Xin Zhou (Institute for Global Environmental Strategies), Roy Boyd (Ohio University), Maria Eugenia Ibarrarán (Universidad Iberoamericana Puebla) and Steven Arquitt (Millennium Institute). Nordine Bendou, Katharina Bohnenberger and Laura Russo provided excellent research assistance. This paper also greatly benefited from a workshop held in 2016 and UN Environment appreciates the technical inputs from all participants. UN Environment would also like to thank the following people, who sent written comments on a previous version of the paper, which helped to improve the final version: Nicola Cantore (UNIDO); Matthias Kern and Dorothee Georg (UN Environment); Rafael Alexandri (Subsecretaría de Planeación y Transición Energética, SENER, Mexico); Marisol Rivera; Aguirre Gómez (INECC, Mexico); Jamal Srouji (UN Environment); and Olivia Clink (UN Environment). This report was edited by Mark Bloch and designed by Thomas Gianinazzi. PAGE gratefully acknowledges the support of all its funding partners: European Union, Germany, Finland, Norway, Republic of Korea, Sweden, Switzerland and the United Arab Emirates.

PAGE is grateful to the European Union for providing the funding support to this project.

European Union

THE INTEGRATED GREEN ECONOMY MODELLING FRAMEWORK

TECHNICAL DOCUMENT

LIST OF ACRONYMS

	A non-in Nutional and Data-ing a bill Analyticate
ANPA	Agenzia Nationale per la Protezione dell'Ambiente
CGE	Computable General Equilibrium model
EGSS	Environmental Goods and Services Sector
GE	Green Economy
GEPAs	Green Economy Policy Assessments
GER	Green Economy Report
GTAP	Global Trade Analysis Project
HS	Harmonized System
IDE-JETRO	Institute of Developing Economics, Japan External Trade Organization
IGEM	Integrated Green Economy Modelling framework
INEGI	Instituto National de Estadistica y Geografia
10	Input-Output model
ISIC	International Standard Industrial Classification System
NSIC	National Standard Industrial Classification System
MRIO	Multi-Regional Input-Output model
OECD	Organisation for Economic Co-operation and Development
PAGE	Partnership for Action on Green Economy
PRODESEN	Programa de Desarrollo del Sistema Eléctrico Nacional
SAM	Social-Accounting Matrix
SD	Systemic Dynamics model
SEMARNAT	Secretaria de Medio Ambiente y Recursos Naturales
UNDP	United Nations Development Programme
UN ENVIRONMENT	United Nations Environment Programme
UNFCCC	United Nations Framework Convention on Climate Change
WHO	World Health Organization
WIOD	World Input-Output Database
WIOT	World Input-Output Table

CONTENTS

LIST OF FIGURES	2
LIST OF TABLES	2
LIST OF ACRONYMS	2
EXECUTIVE SUMMARY	4
1. INTRODUCTION	6
1.1. UN ENVIRONMENT COUNTRY EXPERIENCE WITH THE MODELLING OF GREEN	
ECONOMY POLICIES	7
1.2 BENEFITS AND LIMITATIONS OF THE T21 MODEL	
1.3 THE IGEM FRAMEWORK PROJECT	10
1.3.1 HOW CAN THE CGE AND IO-SAM COMPLEMENT A SINGLE SD MODEL	
ANALYSIS?	12
2. ENHANCING THE ABILITY OF MODELLING TOOLS TO SUPPORT GREEN ECONOMY	
POLICYMAKING: THE IGEM FRAMEWORK	13
2.1 "GREENING" THE MODELS	13
2.1.1 GREEN EXTENSIONS FROM THE IO-SAM	13
2.1.2 THE GREEN CGE MODEL	22
2.1.3 THE SD MODEL AND HOW IT IS "GREENED"	24
2.2 LINKAGES BETWEEN MODELS: THE GENERIC IGEM FRAMEWORK	32
2.2.1 LINKING THE IO-SAM WITH THE CGE	34
2.2.2 LINKING THE CGE WITH THE SD MODEL	34
2.2.3 LINKING THE IO-SAM WITH THE SD MODEL	36
2.3 HOW CAN THE IGEM FRAMEWORK HELP TO ANSWER DIFFERENT GREEN	
ECONOMY POLICY QUESTIONS?	37
3. TESTING THE IGEM FRAMEWORK: SCENARIOS FOR A GREEN AND LOW CARBON ECONOM	Y IN
MEXICO	42
3.1 DIFFERENT APPROACHES TO APPLY THE IGEM FRAMEWORK: THE CASE OF A	
CARBON TAX	42
3.2. APPLICATION OF THE IGEM FRAMEWORK TO MODEL A CARBON TAX IN MEXICO	44
3.2.1 POLICY FRAMEWORK: MEXICO'S ENERGY TRANSITION	44
3.2.2 CARBON TAX SCENARIOS	45
3.2.3 RESULTS FROM THE CGE MODEL	46
3.2.4 RESULTS FROM THE SD MODEL	48
3.2.5 EVALUATING GREEN POLICIES IN THE IGEM: EFFECTS OF INCREASED	
LONGEVITY OF MEXICAN WORKERS USING BOTH THE CGE AND THE SD MODELS	52
4. CONCLUSION	56
5. REFERENCES	58
NOTES	63
ANNEXES	67

1

LIST OF FIGURES

FIGURE 1	PRIORITY SECTORS SELECTED AS KEY FOR A GREEN ECONOMY TRANSITION	8
FIGURE 2	DIAGRAM OF THE IGEM FRAMEWORK SHOWING THE LINKAGES BETWEEN THE SD, CGE	
	AND IO-SAM MODELS	. 12
FIGURE 3	THE SUPPLY CHAIN OF SOLAR POWER GENERATION	. 16
FIGURE 4	DIAGRAM ON HOW TO PREPARE A GREEN SAM BASED ON A GREEN IO	. 17
FIGURE 5	PREPARATION OF THE CORRESPONDENCE TABLE FOR EGSS AND IO SECTORS	. 19
FIGURE 6	DIAGRAM OF THE LINKAGES BETWEEN THE CGE MODEL AND THE IO-SAM MODEL	23
FIGURE 7	MACRO STRUCTURE OF THE CORE SD MODEL	25
FIGURE 8	MACRO STRUCTURE INCLUDING POLICY ELEMENTS	. 26
FIGURE 9	CAUSAL STRUCTURE FOR PRODUCTION ENERGY DEMAND	27
FIGURE 10	SIMPLIFIED CAUSAL STRUCTURE OF RESIDENTIAL ENERGY DEMAND	. 28
FIGURE 11	SIMPLIFIED CAUSAL STRUCTURE OF TRANSPORTATION ENERGY DEMAND INTENSITY	28
FIGURE 12	SIMPLIFIED CAUSAL STRUCTURE OF 'OTHER' ENERGY DEMAND	. 29
FIGURE 13	SIMPLIFIED CAUSAL STRUCTURE OF PRIMARY ENERGY CONSUMPTION (IN THE	
	ELECTRICITY GENERATION AND EMISSIONS SECTOR)	. 29
FIGURE 14	SIMPLIFIED CAUSAL STRUCTURE FOR GHG EMISSIONS	30
FIGURE 15	DIAGRAM OF IGEM FRAMEWORK INFORMATION STRUCTURE	. 32
FIGURE 16	CLASSIC PRODUCTION FUNCTIONS	. 34
FIGURE 17	TARGET-DRIVEN APPROACH	43
	INVESTMENT (OR PRICE)-DRIVEN APPROACH	
FIGURE 19	BUSINESS-AS-USUAL (BAU) SIMULATION	. 48
FIGURE 20	SIMULATION OF CARBON TAXES ON CO2EQ EMISSIONS REBATED TO RENEWABLES	
	(FBL/FBH COMPARED TO BAU)	49
FIGURE 21	COMPARISON OF CARBON TAX WITH REBATE TO RENEWABLES (FEEBATE) TO CARBON	
	TAX WITH LUMP SUM REBATE TO POPULATION (FBL COMPARED TO RL AND FBH	
	COMPARED TO RH)	. 50
FIGURE 22	EVOLUTION OF THE SHARE OF RENEWABLE ENERGY CAPACITY FOLLOWING BAU, FBL,	
	RL, FBH AND RH SCENARIOS	. 51
FIGURE 23	SHARE OF RENEWABLES IN TOTAL ELECTRICITY GENERATION FOLLOWING THE	
	COUPLED SD-CGE SIMULATION	54

_

LIST OF TABLES

TABLE 1	DISAGGREGATING AN IO TABLE WITH A GREEN SECTOR	15
TABLE 2	CLASSIFICATION OF RENEWABLE ENERGY IN JAPAN'S EGSS AND CORRESPONDENCE	
	IN ISIC AND THE IO MODEL	20
TABLE 3	PREPARATION OF THE CORRESPONDENCE TABLE FOR EGSS AND IO SECTORS	21
TABLE 4	INPUT VARIABLES FOR THE THREE SUB-MODELS	33
TABLE 5	ILLUSTRATIVE LIST OF GREEN ECONOMY POLICY QUESTIONS AND HOW THE IGEM	
	FRAMEWORK CAN ADDRESS THEM	37
TABLE 6	THE CARBON TAX - RATES AND REVENUES	45
TABLE 7	SUMMARY OF CARBON TAX SCENARIOS TESTED BY THE IGEM FRAMEWORK	45
TABLE 8	AGGREGATE AND SECTORAL EFFECTS OF A REVENUE-NEUTRAL CARBON TAX	
	(FEEBATE POLICY), IN 2036	46
TABLE 9	AGGREGATE AND SECTORAL EFFECTS OF A REVENUE-NEUTRAL CARBON TAX	
	(FEEBATE POLICY), IN 2036	47
TABLE 10	AGGREGATE AND SECTORAL EFFECTS OF A REVENUE-NEUTRAL CARBON TAX	
	(REBATE POLICY) AND A FEEBATE SCENARIOS (FBH), IN 2036	53
TABLE 11	MAIN SIMULATIONS' RESULTS FOR THE DIFFERENT SCENARIOS	55

_

EXECUTIVE SUMMARY

Under the Partnership for Action on Green Economy (PAGE), UN Environment collaborated with modelling experts from around the globe to develop the Integrated Green Economy Modelling (IGEM) framework that aims to better respond to countries' needs in terms of analysing the cross- sectoral impacts of Green Economy (GE) policies, so as to incorporate some of the lessons learned from the application of existent modelling tools, such as the T21 model. Therefore, the IGEM framework is designed to serve three purposes: (1) it builds on UN ENVIRONMENT's past country experience with modelling green economy policies to answer increasingly complex requests from governments; (2) it supports the endowment of countries with solid quantitative tools to inform the design and implementation of green economy policies; and (3) it advances the process of implementing and monitoring some of the Sustainable Development Goals (SDGs), adopted in September 2015.

The IGEM framework presents a methodology on how to integrate three of the main modelling techniques used for green economy policy assessment to refine impact analysis of green policies and investments in the economy. It presents the linkages between a system dynamics (SD) model and a computable general equilibrium (CGE) model, building on input- output and social accounting matrix (IO-SAM) models. The goal of the first version policy questions. "Greening" includes modifications to the conventional models to analyse the impact on sectors that are related to the production and use of environmentally friendly goods and services, and it also includes the use of disaggregated data on these sectors. This implies making green sectors explicit and distinguishing them from other sectors which are defined based on conventional technologies and practices, as well as modifying some of the main interrelations of the model variables to better capture the impacts of green economy policies (policies inducing low carbon and resource efficient outcomes, among others).

4

In particular, a green IO-SAM model is featured by explicitly distinguishing the green sectors from other sectors which utilize conventional (high-carbon, less resource efficient) technologies and practices. A standard CGE model may be transformed into a "green" CGE model either by using input data on green sectors coming from the expanded IO-SAM; and/or by making specific modifications to the conventional CGE model to reflect the use of environmentally efficient technologies. These two approaches can be integrated. The System Dynamics (SD) model component of the IGEM framework can be best thought of as a SD model designed to focus on green policy analysis and to work in concert with the green CGE and green IO-SAM models. To do so, a green version of the SD model will develop the sector

预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_15880

