
Technical Background Report to the Global Atmospheric Mercury Assessment

Citation: AMAP/UNEP, 2008. Technical Background Report to the Global Atmospheric Mercury Assessment. Arctic Monitoring and Assessment Programme / UNEP Chemicals Branch. 159 pp.

This report is available electronically from the AMAP website (<u>www.amap.no</u>) and from the UNEP Chemicals website (<u>www.chem.unep.ch/mercury/</u>).

Acknowledgement: AMAP and UNEP Chemicals Branch would like to acknowledge the financial support received from Denmark, Norway, Sweden and the Nordic Council of Ministers to support the work to prepare this report. AMAP and UNEP Chemicals Branch would also like to thank Jozef Pacyna, John Munthe, Henrik Skov, Oleg Travnikov and Ashu Dastoor for their work as lead authors in drafting this report, and to all others who co-authored or contributed to parts of this report.

Contents

Introduction	1
Part A: Global Emissions of Mercury to the Atmosphere	3
A1. Mercury emissions - introduction	4
A2. Sources of mercury to the atmosphere	5
A2.1 Natural sources of mercury	5
A2.2 Anthropogenic sources of mercury to the atmosphere	7
A2.2.1 Major anthropogenic – by-product – sources of mercury	7
A2.2.2 Intentional uses of mercury: Mercury consumption by world region and by application	8
A2.2.2.1 Artisanal gold mining	9
A2.2.2.2 Vinyl chloride monomer production	9
A2.2.2.3 Chlor-alkali production	9
A2.2.2.4 Batteries	10
A2.2.2.5 Dental applications	10
A2.2.2.6 Measuring and control devices	11
A2.2.2.7 Lamps	11
A2.2.2.8 Electrical and electronic devices	12
A2.2.2.9 Other applications of mercury	12
A3. Estimates of current global anthropogenic emissions to the atmosphere	13
A.3.1 Global inventory for the reference year 2005: General approach	13
A3.1.1 Emissions inventory for by-product sectors: Methods and data sources	14
A3.1.2 Emissions from mercury use in products: Methods and data sources	17
A3.1.2.1 Regional economic activity	17
A3.1.2.2 Regional mercury consumption	19
A3.1.2.3 Method for estimating emissions from wastes and product use	21
A3.1.2.4 Method for estimating emissions from mercury use in dental amalgam	24
A3.1.2.5 Method for estimating emissions from mercury use in artisanal gold mining	24
A3.1.3 Methods used to geospatially distribute emissions data	24
A3.1.4 Methods for speciation of inventory emissions	29
A3.2 Discussion of results by source category	29
A3.2.1 Emissions from by-product sectors	29
A3.2.2. Emissions from product use	33
A3.2.2.1 Remarks on emissions from product use of mercury	35
A3.2.2.1.1 Waste incineration	35
A3.2.2.1.2 Long-term fate of mercury in society	35
A3.2.3 Mercury emissions from cremation	36
A3.2.4 Mercury emissions from artisanal and small-scale gold mining	37
A3.2.5 Combined global inventory – emissions by sectors	38
A3.3 Discussion of results by region	40
A3.4 Uncertainties in emission estimates	43
A3.4.1 Uncertainties in by-product emission sources	44
A3.4.2 Uncertainties in emission data for product use, cremations and artisanal gold mining	47
A3.4.2.1 Results of survey on uncertainties and verification addressed to	47

national emissions experts	
A3.4.2.2 Summary of additional national information reported to UNEP- Chemicals	49
A4. Trends in atmospheric mercury emissions to the atmosphere	50
A4.1 Regional trends in atmospheric mercury emissions	50
A4.1.1. Historical trends of emission until the year 2000	50
A4.1.2 Comparison of the 2000 and 2005 emission inventories	50
A4.2 Emission scenarios and future trends	54
A4.2.1 Selection of scenarios	54
A4.2.2 Methods for scenario emissions estimates for by-product emissions	55
A4.2.3 Methods for scenario emission estimates for intentional use of mercury	57
A4.2.4 Projected future trends in by-product (plus chlor-alkali industry) emissions based on emission scenarios	58
A4.2.5 Discussion of results by region	60
A4.2.6 Future scenarios for emissions from product use, cremation and artisanal gold mining	62
Part B: Atmospheric Pathways, Transport and Fate	64
B5. Atmospheric pathways	65
B5.1 Atmospheric reactions	65
B5.1.1 Polar Regions	68
B5.1.2 Mid- and equatorial latitudes	69
B5.1.3 Continental air masses and free troposphere	69
B5.1.4 Conclusions	70
B5.2 Atmospheric transport and surface fluxes	70
B5.3 Impact of Global change	71
B6. Environmental fate and trends	72
B6.1 Environmental monitoring networks	72
B6.2 Temporal trends derived from environmental measurements	74
B6.2.1 Environmental archives	74
B6.2.2 Long-term monitoring programmes	75
B6.2.3 Geographical distribution	77
B6.2.4 Vertical distribution of mercury fractions	79
B6.3 Climate impacts on future mercury levels	79
B7. Modeling atmospheric transport and deposition	79
B7.1 Model types and methods	80
B7.2 Model applications	84
B7.2.1 Global mercury chemistry	84
B7.2.2 Arctic Mercury Depletion Events	85
B7.2.3 Mercury trend analysis	88
B7.2.4 Long range episodic transport	89
B7.2.5 Model Intercomparison	91
B7.2.5.1 MSC-East intercomparison study	91
B7.2.5.2 US EPA intercomparison study	93
B7.2.6 Mass balance studies	95
B7.3 Mercury air concentrations and deposition patterns	98
B7.4 Source-receptor relationships	103
B7.5 Changes in mercury concentration and deposition levels between 2000 and 2005	106
B7.6 Uncertainties	109

Gaps in knowledge and steps for improvement	111
References	114
Appendices	125

Introduction

At its meeting in 2007, the United Nations Environment Programme (UNEP) Governing Council requested the Executive Director to prepare a report, drawing on, among other things, ongoing work in other forums addressing:

(a) Best available data on mercury atmospheric emissions and trends including where possible an analysis by country, region and sector, including a consideration of factors driving such trends and applicable regulatory mechanisms;

(b) Current results from modeling on a global scale and from other information sources on the contribution of regional emissions to deposition which may result in adverse effects and the potential benefits from reducing such emissions, taking into account the efforts of the Fate and Transport partnership established under the United Nations Environment Programme mercury programme.

(UNEP GC Decision 24/3)

UNEP cooperated with the Arctic Monitoring and Assessment Programme (AMAP) working group under the Arctic Council to develop a report responding to this request, with the AMAP Secretariat engaged to coordinate the work process. UNEP Chemicals Branch/DTIE has been responsible for the work from UNEP's side. The work includes a summary report for policymakers, '*Global Atmospheric Mercury Assessment: Sources, Emissions and Transport*', and a detailed technical background report (this report). The technical background report for forms the basis for the summary report to the Governing Council and for parts of the AMAP assessment.

The Arctic Monitoring and Assessment Programme has produced two assessments of heavy metals (including mercury) in the Arctic (AMAP, 1998, 2005) and is currently in the process of preparing an updated assessment of mercury in the Arctic to be delivered to the Arctic Council in 2011. As part of the assessment, a new global inventory of anthropogenic mercury emissions to air should be prepared to update that produced in 2002 (Pacyna et al., 2006). AMAP should also undertake new modeling studies, using the updated inventory, to investigate atmospheric transport of mercury.

AMAP is mandated through the Arctic Council to support the activities under UNEP and other international organizations concerning mercury and persistent organic pollutants. The AMAP Working Group therefore agreed to fast-track its proposed work on mercury emissions and atmospheric transport in order that, in addition to contributing to the 2011 AMAP mercury assessment, it could also provide input to UNEP's 2008 *Global Atmospheric Mercury Assessment* Report, and to the UN ECE LRTAP Hemispheric Transport of Air Pollutants group that would be preparing a separate report on mercury atmospheric transport in 2010.

The report has been prepared by expert groups engaged by AMAP and UNEP. Information submitted by Governments, intergovernmental and non-governmental organizations and available scientific information have been used in preparing the report. It has also made use of information compiled by the UNEP Global Mercury Partnership (Mercury Air Transport and Fate Research partnership area), in particular in relation to natural sources of mercury and mercury emissions from artisanal and small-scale gold mining.

The report has two main parts. Part A addresses mercury emissions to air, updating the global anthropogenic mercury emissions inventory for the (nominal) year of 2005, and presents three emissions scenario inventories for the year 2020. It also covers the work undertaken to geospatially distribute these inventories (within a 0.5×0.5 degree global grid) to facilitate

their use as input to atmospheric transport models. The inventory activities expand those conducted in the past by including a first attempt to quantify (at a global scale) emissions associated with intentional use of mercury in products, and their associated entry into waste streams. Part B describes the current state of knowledge concerning atmospheric transport of mercury, with a focus on modeling approaches that can be used to investigate mercury atmospheric transport and fate, source-receptor relationships, and possible effects of changes in emissions. The emissions inventory and modeling components both include a discussion of uncertainties. The estimated ranges of uncertainties associated with current and past inventory estimates are presented so that trends in emissions can be evaluated in an appropriate manner.

The information sources used in the preparation of this document are fully-referenced.

Part A: Global Emissions of Mercury to the Atmosphere

Authors:

Jozef M. Pacyna, Norwegian Institute for Air Research (NILU), Norway John Munthe, IVL Swedish Environmental Research Institute, Sweden Simon Wilson, AMAP Secretariat, Norway

Co-authors:

Peter Maxson Concorde East-West, Belgium (mercury in products) Kyrre Sundseth, Norwegian Institute for Air Research (NILU), Norway Elisabeth G. Pacyna, Norwegian Institute for Air Research (NILU), Norway Ermelinda Harper, Yale University, USA Karin Kindbom, IVL Swedish Environmental Research Institute, Sweden Ingvar Wängberg, IVL Swedish Environmental Research Institute, Sweden Damian Panasiuk, NILU Polska, Poland Anna Glodek, NILU Polska, Poland Joy Leaner, Council for Scientific and Industrial Research, South Africa James Dabrowski, Council for Scientific and Industrial Research, South Africa

Collaborators/Contributors:

Robert Mason, USA (natural mercury emissions) Prof. Ming Wong, China-Hong Kong Dr. G.S. Ochoa, Mexico Dr. Anne Pope, USA Frits Steenhuisen, Netherlands (spatial distribution of emission inventories) Kevin Telmer, Canada (mercury emissions from artisanal and small-scale gold mining activities)

预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_15569