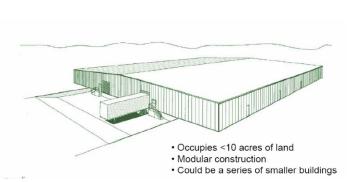


Metallic Mercury Long-Term Storage Possibilities / Options

Thomas Brasser GRS

with contributions by Sven Hagemann

UNEP Global Mercury Partnership, Waste Management - Tokyo, Japan, March 09-10, 2010 <


Who is GRS (,Plant & Reactor Safety Ltd.')

- Non-profit, independent expert and research organization
- Assess and improve safety of technical facilities
- Focus on nuclear safety and waste management
- Customers: Ministries and authorities, European Commission
- Technical support of Federal Ministries conc. safety of chemicals, e.g. Mercury

Mercury Long-Term Storage: General Options

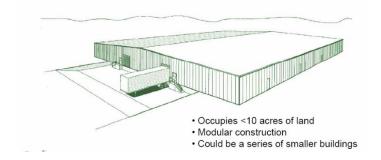
Warehousing

Underground Disposal

Deep Injection

+ Additional Option: Stabilization

Not considered: Surface Landfill



Mercury Long-Term Storage: Warehousing - Features

- Investment app. 10 Mio US\$
- Waste still in biosphere
- Dry climate required
- Safety dependent on political & economic constraints
- US concept for app. 100 yrs.
- No permanent solution
- Current proposal of AIT

Mercury Long-Term Storage: Deep Injection - Features

- Investment costs unknown
- No control after injection
- Long-term safety assessment problematic
- Suitable geological situation needed
- Several applications worldwide (but no Hg) with different success

Mercury Long-Term Storage: Underground Disposal - Features

- Investment costs strongly variable (e.g. new facility / abandoned mine)
- Long-term safety assessment (broad experience)
- Suitable geological situation needed (e.g. salt, hard rock - optionally combinations)
- Several facilities with positive experiences since decades (esp. in rock salt formations)
- Operational safety must be guaranteed
- Combination with other hazardous wastes recommended

UNEP Global Mercury Partnership, Waste Management - Tokyo, Japan, March 09-10, 2010

Background: EU Storage Obligation for Metallic Mercury

Regulation allows only few storage options, e.g.:

- Temporary or
- Permanently in
 - Salt mines^{*}) or in
 - Deep underground hard rock formations**)
- *) adapted for the disposal of metallic mercury
- ^{**)} providing a level of safety and confinement equivalent to that of salt mines

erties – Comparison

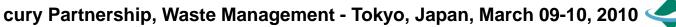
https://www.yunbaogao.cn/report/index/report?reportId=5_14213

透透

노

كأذ

祖


西

维码如一

7

	Rock Salt	Clay / Claystone	Crystalline (e.g. Granite)
	high	low	medium
r	nearly impermeable	very low - low	very low (without joints) - permeable (jointed)
	medium	low - medium	high
	viscous (creep)	plastic - brittle	brittle
	self-stability	timbering necessary	high (without joints) - low (intensively jointed)
I	lithostatic isotropic	anisotropic	anisotropic
	high	very low	very low
	very low	very high	medium - high

